

April 14, 2014

Ms. Katharine K. Buckner
Sandhills and Pulp & Paper Permitting Section
Engineering Services Division
Bureau of Air Quality
South Carolina Department of Health and Environmental Control 2600 Bull Street
Columbia, South Carolina 29201-1708

Re: Resolute FP US Inc.

Construction Permit Application

Industrial Boiler MACT Modifications – No. 1 and No. 2 Combination Boilers

Dear Ms. Buckner:

On behalf of Resolute FP US Inc., please find the attached construction permit application for modifications to the No. 1 and No. 2 Combination Boilers to comply with the Industrial Boiler MACT.

If you have any questions, require further clarification, or need additional information regarding the attached application, please do not hesitate to contact me.

Sincerely,

Steven R. Moore URS Corporation

Stever R. More

Attachment

cc: Mr. Dale Herendeen – Resolute FP US Inc.

Environmental Services

Construction Permit Application Industrial Boiler MACT Modifications Combination Boiler No. 1 and No. 2

April 2014

Forest Products

Catawba Mill

1.0 Introduction

Resolute FP US, Inc. (Resolute) operates a pulp and paper mill located in Catawba, South Carolina. Resolute plans to modify the existing No. 1 and No. 2 Combination Boilers at the Catawba Mill to comply with the National Emission Standards for Hazardous Air Pollutants (NESHAP) from Industrial, Commercial, and Institutional Boilers and Process Heaters (Industrial Boiler MACT - 40 CFR Part 63, Subpart DDDDD).

2.0 Project Description

The No. 1 and No. 2 Combination Boilers are currently permitted to burn biomass, tire-derived fuel (TDF), residual fuel oil, specification used oil, and natural gas. The Combination Boilers are also control devices used to burn the non-condensable gases (NCG's) generated by the Kraft pulp mill for compliance with the Pulp and Paper NESHAP (40 CFR Part 63, Subpart S) and the Kraft pulp mill New Source Performance Standards (40 CFR 60, Subpart BB).

The Industrial Boiler MACT emission limits and work practice standards vary depending on the applicable sub-category of each boiler. The primary fuel for the No. 1 and No. 2 Combination Boilers is wet biomass. Both of these sources were classified as "hybrid suspension grate" boilers by the South Carolina Department of Health and Environmental Control on October 13, 2013. This project will not change the fuels fired or the design of the boilers.

This project will upgrade the emission controls on each boiler to ensure compliance with the applicable Industrial Boiler MACT emission limits for boilers in the hybrid suspension grate sub-category. The planned changes to each combination boiler include upgrading the existing over-fire air (OFA) system and the existing multi-clone dust collectors.

The OFA system will be upgraded to provide more reliable and consistent combustion control to maintain compliance with the applicable CO emission limit. The OFA upgrades may include new OFA air nozzles, a new OFA booster fan, new air-swept fuel spouts, and the associated piping, dampers, motors, etc. to more precisely control the air distribution within each boiler. The new air-swept fuel spouts will also allow a more uniform fuel distribution across the grate, further improving combustion.

Each existing multi-clone will be upgraded to maintain particulate matter and opacity emissions below the level required from hybrid suspension grate boilers. The upgrade may include installing larger tubes in the existing multi-clone or replacing the multi-clone if necessary. The OFA system upgrade is also expected to reduce carry-over of particulate matter from each boiler into its downstream multi-clone and electro-static precipitator (ESP).

Modifications to each existing ESP may be required in a subsequent project if the planned modifications to the combustion air and multi-clone systems do not demonstrate compliance with the applicable particulate matter and opacity emission limits.

The project will not change the maximum or actual amount of biomass, TDF, natural gas, residual oil, or specification used oil fired by the No. 1 and No. 2 Combination Boilers. There are no changes planned to the combustion grate, the natural gas burners, or the residual oil burners, and no increase in the maximum heat input capacity for any fuel.

3.0 Emission Calculations

The emissions from the No. 1 and No. 2 Combination Boilers are based on engineering stack test data conducted to evaluate Industrial Boiler MACT and AP-42 emission factors for pollutants where stack testing has not been performed. A summary of the stack test results for each combination boiler are presented in Appendix B. The emission factors and annual emissions are summarized in Table 1 below.

Table 1
Emission Factors and Annual Emissions Summary

		No. 1 Combi	nation Boiler		Tradi Emissio	Total			
Pollutant	Emission	Factor	Annual*			n Factor	Annual*	Actual	Emissions
	(lb/MMBtu)	Reference	Heat Input (MMBtu/yr)	Emissions (tpy)	(lb/MMBtu)	Reference	Heat Input (MMBtu/yr)	Emissions (tpy)	(tpy)
PM	0.27	Test	2,504,956	338	0.23	Test	3,341,062	384	722
PM ₁₀	0.20	AP-42**	2,504,956	250	0.17	AP-42**	3,341,062	285	535
PM _{2.5}	0.18	AP-42**	2,504,956	219	0.15	AP-42**	3,341,062	249	468
СРМ	0.017	AP-42**	2,504,956	21	0.017	AP-42**	3,341,062	28	50
SO ₂	0.91	Test	2,504,956	1,140	0.77	Test	3,341,062	1,286	2,426
NO _X	0.31	Test	2,504,956	388	0.29	Test	3,341,062	484	873
СО	0.47	Test	2,504,956	589	0.91	Test	3,341,062	1,520	2,109
VOC	0.017	AP-42**	2,504,956	21	0.017	AP-42**	3,341,062	28	50
Pb	4.80E-05	AP-42**	2,504,956	0.06	4.80E-05	AP-42**	3,341,062	0.08	0.14
	kg/MMBtu				kg/MMBtu				
CO ₂	93.8	MRR**	2,504,956	259,000	93.8	MRR**	3,341,062	345,449	604,449
CH ₄	0.032	MRR**	2,504,956	88	0.032	MRR**	3,341,062	118	206
N ₂ O	0.0042	MRR**	2,504,956	12	0.0042	MRR**	3,341,062	15	27
CO ₂ mass				259,100				345,583	604,683
CO₂equiv.				264,665				353,005	617,670

^{*} Actual annual heat input January 2012 - December 2013.

^{**}Biomass factors (PM_{10} and $PM_{2.5}$ by ratio of AP-42 factors).

4.0 Regulatory Applicability

4.1 SC Reg. 61-62.1, Section II – Permit Requirements

South Carolina Regulation 61-2.1, Section II.A.1.a requires sources to obtain a construction permit from the Department prior to any construction, alteration, or addition to a source of air contaminants, including control devices. Section II.A.1.b allows the Department to grant permission to proceed with minor alterations or additions to sources of air contaminants without issuance of a construction permit when the Department determines the alteration or addition will not increase the quantity or alter the character of the source's emissions.

Resolute believes this project qualifies for the exemption from construction permitting. This project is consistent with the exemption criteria in Section II.B.5 and the construction permit exemption criteria in the November 2, 2011 guidance "Like-for-Like replacement of equipment and control device(s) at Prevention of Significant Deterioration (PSD) Major Sources."

Resolute requests an exemption from the requirement to obtain a construction permit for this project. Resolute has prepared this construction permit application which addresses all the exemption criteria. However, Resolute has also included signed permit application forms in case the Department determines a construction permit is required.

4.2 SC Reg. 61-62.5, Standard No. 1 – Emissions from Fuel Burning Operations

The No. 1 and No. 2 Combination Boilers are currently subject to the following Standard No. 1 emission limits for Opacity, PM, and SO₂:

- Opacity not to exceed 40% (except for 6-minutes per hour and 24-minutes per day)
- PM ≤ 0.6 lb/MMBtu heat input
- $SO_2 \le 3.5$ lb/MMBtu heat input

The No. 1 and No. 2 Combination Boilers are currently subject to Standard No. 1 opacity monitoring requirements. The OFA system and multi-clone upgrades will not change the existing Standard No. 1 emission limits or the opacity monitoring requirements.

4.3 SC Reg. 61-62.5, Standard No. 5.2 – Control of Oxides of Nitrogen (NO_x)

The OFA system upgrade involves modernizing the combustion air delivery system to improve combustion control and lower emissions. The OFA system upgrade does not involve any changes to the combustion grate, the natural gas burners, the residual oil burners, or the NCG burners. The OFA system upgrade meets the exemption criteria specified in Standard 5.2, Section I(a)(2) for burner heads, nozzles, and windboxes.

4.4 SC Reg. 61-62.5, Standard No. 2 – Ambient Air Quality Standards

The previously modeled emission rates of PM/PM $_{10}$ /PM $_{2.5}$ are based on the current state allowable emission limit of 0.6 lb/MMBtu. The applicable Industrial Boiler MACT emission limit is 0.44 lb/MMBtu, resulting in future PM/PM $_{10}$ /PM $_{2.5}$ emission rates lower than previously modeled. The emissions of SO $_{2}$, NO $_{x}$, and lead from the No. 1 and No. 2 Combination Boilers are expected to remain unchanged as a result of the project. Therefore, air dispersion modeling for Standard No. 2 is not being submitted at this time.

The CO emissions from the No. 1 and No. 2 Combination Boilers are expected to decrease as a result of the project. However, the average CO emissions from the No. 2 Combination Boiler are higher than previously modeled. A review of the current CO modeling analysis on file with the Department (April 2005) demonstrates compliance with the National Ambient Air Quality Standards for CO with an ample margin of compliance.

The modeled CO emission rate for the No. 1 Combination Boiler was 235 lb/hr compared to the average CO emission rate of 172 lb/hr. The actual CO emissions from the No. 1 Combination Boiler ranged between 80 lb/hr and 400 lb/hr. The modeled CO emission rate for the No. 2 Combination Boiler was 298 lb/hr compared to the average CO emission rate of 466 lb/hr. The actual CO emissions from the No. 2 Combination Boiler ranged between 118 lb/hr and 948 lb/hr.

The actual CO emissions are quite variable and may be as much as four times higher than previously modeled from the No. 1 and No. 2 Combination Boilers. However, the April 2005 air dispersion modeling analysis indicated a very large margin of compliance. As shown in Table 2 below, the maximum modeled CO concentrations can be multiplied by a factor of four, and still demonstrate a significant compliance margin of 75% or more. Therefore, air dispersion modeling for Standard No. 2 is not being submitted at this time.

Table 2
Carbon Monoxide Air Dispersion Modeling Summary

	2005	2014	DHEC	2014	
Averaging	Maximum	Adjusted	Background	Total	NAAQS
Period	Concentration	Concentration	Concentration	Concentration	$(\mu g/m^3)$
	(μg/m³)	(μg/m³)	(μg/m³)	(μg/m³)	
1-hour	693	2,772	1,870	4,642	40,000
8-hour	273	1,092	1,374	2,466	10,000

4.5 SC Reg. 61-62.5, Standard No. 7 – Prevention of Significant Deterioration Permit Requirements

The proposed modifications to the OFA System and multi-clone on each combination boiler are expected to decrease the $PM/PM_{10}/PM_{2.5}$ and CO emissions from current levels to ensure compliance with the Industrial Boiler MACT emission limits. There are no increases in biomass, natural gas, residual oil, specification used oil, or TDF firing as a result of the project. As a result, there are no anticipated increases in emissions of SO_2 , NO_X , or lead due to the project.

The PSD applicability was determined using the actual-to-projected actual applicability test of Standard No. 7(a)(2)(c). The baseline actual emissions are for the period January 2012 through December 2013 as defined in Standard No. 7(b)(4). The projected actual emissions assume the average emission factors and heat input during the baseline period remain unchanged following the project. Therefore, the actual and projected actual emissions are identical and there is no emissions increase for any PSD pollutant.

The detailed calculations are provided in Attachment B, along with an example calculation.

Table 3
PSD Applicability Summary

135 Applicability Summary									
	No. 1	Combination E	Boiler	No. 2 Combination Boiler			Total	DCD	Is PSD
Pollutant	Baseline* Emissions (tpy)	Projected Emissions (tpy)	Emission Increase (tpy)	Baseline* Emissions (tpy)	Projected Emissions (tpy)	Emission Increase (tpy)	Emission Increase (tpy)	PSD Threshold (tpy)	Triggered? (yes/no)
PM	338	338	0	384	384	0	0	25	No
PM ₁₀	250	250	0	285	285	0	0	15	No
PM _{2.5}	219	219	0	249	249	0	0	10	No
СРМ	21	21	0	28	28	0	0	**	No
SO ₂	1,140	1,140	0	1,286	1,286	0	0	40	No
NO_X	388	388	0	484	484	0	0	40	No
CO	589	589	0	1,520	1,520	0	0	100	No
VOC	21	21	0	28	28	0	0	40	No
Pb	0.06	0.06	0	0.08	0.08	0	0	0.6	No
CO ₂	259,000	259,000	0	345,449	345,449	0	0		No
CH ₄	88	88	0	118	118	0	0		No
N ₂ O	12	12	0	15	15	0	0		No
CO ₂ mass	259,100	259,100	0	345,583	345,583	0	0	75,000	No
CO₂equiv.	264,665	264,665	0	353,005	353,005	0	0	75,000	No

^{*} Baseline emissions January 2012 - December 2013.

4.6 SC Reg. 61-62.5, Standard No. 8 – Toxic Air Pollutants

Standard No. 8 does not apply to fuel burning sources or sources subject to a MACT standard. Therefore, Standard No. 8 does not apply to the No. 1 and No. 2 Combination Boilers.

^{**} CPM is added to PM₁₀ and PM_{2.5} to determine PSD applicability, for this project all PM emissions are reductions.

4.7 40 CFR 60, Subpart D – Standards of Performance for Fossil-Fuel-Fired Steam Generators and 40 CFR 60, Subpart Db – Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units

The No. 1 and No. 2 Combination Boilers were constructed in 1959 and 1968 respectively, prior to the applicability date of New Source Performance Standards (NSPS) Subpart D and Subpart Db. The NSPS definition of modification at $\S60.14(e)(5)$ includes an exemption for "the addition or use of any system or device whose primary function is the reduction of air pollutants, except when an emission control system is removed or is replaced by a system which the Administrator determines to be less environmentally beneficial." This project is being done solely for Industrial Boiler MACT compliance and therefore is not an NSPS modification because it is environmentally beneficial by its very nature. The emissions of PM, SO_2 , and NO_X from the No. 1 and No. 2 Combination Boilers are expected to remain unchanged or decrease as a result of the project. Therefore, NSPS Subpart D and Db are not applicable.

Figure 1
USGS MAP
Resolute FP US, Inc. – Catawba Mill

ATTACHMENT A APPLICATION FORMS

Bureau of Air Quality Construction Permit Application Facility Information Page 1 of 2

A.	FACILITY ID	ENTIFICATION					
1. SC Air Permit Number (8-digits only): 2440 - 0	005	2. Application Date: April 14, 2014					
3. Facility Name: Resolute FP US, Inc.		4. Facility Federal Tax Identification No.:					
•							
B. F	ACILITY PHY	YSICAL ADDRESS					
1. Physical Address: 5300 Cureton Ferry Road			2. County: York				
3. City: Catawba		State: SC	4. Zip Code: 29704				
5. Facility Coordinates (Facility coordinates should	l be based at the	front door or main entran	ce of the facility.)				
Latitude: 34° 50′ 39" Longi	itude: 80° 53' 26	5"	NAD27 or NAD83				
		DETERMINATION					
Are there other facilities in close proximity that con	uld be considere	ed co-located? 🛛 No 🔲	Yes*				
List potential co-located facilities, including air per	rmit numbers if	applicable:					
If applicable, location in application for co-location	n determination:						
(*If yes, please submit co-location application)	ability determina	ation details in an attachme	ent to this application.)				
D, CONI	FIDENTIAL IN	NFORMATION / DATA					
Does this application contain confidential informati							
(**If yes, include a sanitized version of the							
•	11	,					
E	. COMMUNIT	TY OUTREACH					
What are the potential air issues and community co	oncerns?						
No issues or concerns based on emission levels and	l previous air di	spersion modeling results.					
		DUCTS / SERVICES					
1. Primary Products / Services: Coated Paper and M	Aarket Pulp						
2. Primary SIC Code: 2611, 2621		3. Primary NAICS Code: 322122, 322121					
4. Other Products / Services:							
5. Other SIC Code(s):		6. Other NAICS Code(s)	:				
		CILITY CONTACT					
(Person at the facility who can ans							
Č	utation: Mr.	First Name: Dale	Last Name: Herendeen				
Mailing Address: PO Box 7							
City: Catawba		State: SC	Zip Code: 29704				
E-mail Address: dale.herendeen@resolutefp.com		Phone No.: (803) 981-80					
One hard copy of the signed							
If additional individuals need electronic	c copies of the p						
Name			E-mail Address				
Steven Moore		steven.moore@urs.com					

Bureau of Air Quality Construction Permit Application Facility Information Page 2 of 2

	H. LIST OF FO	ORMS INCLUDED							
Form Name			ded (Y/N)						
Equipment/Processes (DHEC Form 2567)		∑ Yes							
Control Devices (DHEC Form 2568)		Yes No							
Emissions (DHEC Form 2569)		⊠ Yes							
Regulatory Review (DHEC Form 2570)		⊠ Yes							
Modeling Information (DHEC Form 2573)		Yes No	mates higher them muones downiest)						
Expedited Review Request (DHEC Form 22	212)	Yes No	rates higher than proposed project)						
Expedited Review Request (DITEC Form 22	.12)	☐ Tes ☐ No							
	I. OWNER	OR OPERATOR							
Title/Position: General Manager	Salutation: Mr.	First Name: Patrick	Last Name: Moore						
Mailing Address: PO Box 7	(4)								
City: Catawba		State: SC	Zip Code: 29704						
E-mail Address: patrick.moore@resolutefp.	com	Phone No.: (803) 981-8376	Cell No.:						
		RATOR SIGNATURE	CONTRACTOR OF THE PROPERTY OF						
complete based on information and belief which are found to be incorrect, may result it									
Signature of Owner or Operator			Date						
		T PREPARED THIS APPLICATION IN THE STREET TH							
Mailing Address: 128 Millport Circle	Salutation, Wil.	That Name. Steven	Last Name. Moore						
City: Greenville		State: SC	Zim Codo: 20607						
			Zip Code: 29607						
E-mail Address: steven.moore@urs.com SC Professional Engineer License/Registrati	ion No. (if annii achi	Phone No.: (864) 527-4734	Cell No.:						
SC Professional Engineer License/Registrati	ion No. (ii applicable	e):							
K. P	ROFESSIONAL EI	NGINEER INFORMATION							
Consulting Firm Name: URS Corporation									
Title/Position: Engineer	Salutation: Ms.	First Name: Amy	Last Name: Marshall						
Mailing Address: 1600 Perimeter Park Drive									
City: Morrisville		State: NC	Zip Code: 27560						
E-mail Address: amy.marshall@urs.com		Phone No.: (919) 461-1251	Cell No.:						
SC License/Registration No.: 22147		11011011(515) 101 1201	CONTION						
ASSESSMENT OF THE PROPERTY OF	ROFESSIONAL E	NGINEER SIGNATURE							
I have placed the signature and seal on the e			ve reviewed this construction permit						
application as it perfains to the requirements	of South Carolina F	Regulation 61-62, Air Pollution Co	ontrol Regulations and Standards.						
Signature of Professional Engineer	01 4/11/ Da	<u>/</u> / / te							
William Market									

Bureau of Air Quality Construction Permit Application Equipment/Processes Page 1 of 1

1. Facility Name: Resolute FP US, Inc.	A. APPLICATIO	N IDENTIFICATION
	1. Facility Name: Resolute FP US, Inc.	
2. SC Air Permit Number (8-digits only): 2440 - 0005 3. Application Date: April 14, 2014	2. SC Air Permit Number (8-digits only): 2440 - 0005	3. Application Date: April 14, 2014

B. PROJECT DESCRIPTION Brief Project Description (What, why, how, etc.): Industrial Boiler MACT Compliance Project

C. ATTACHMENTS						
1. Process Flow Diagram	2. Location in Application:					
3. Detailed Project Description	4. Location in Application: Document					

				D. EQUIPME	NT / PROC	ESS INFO	RMATION	N				
1. Equipment ID / Process ID	2. Action	3. Equipment / Process Description	4. Maximum Design Capacity (Units)	5. Fuels Combusted	6. Control Device ID(s)	7. Emission Point ID(s)	8. Raw Material(s)	9. Product(s)	10. Pollutant(s)/ Parameter(s) Monitored	11. Monitoring Frequency	12. Reporting Frequency	13. Monitoring / Reporting Basis
2605	modify	No.1 Combination Boiler	392-405 MMBtu/hr	Biomass, TDF, Residual Oil, Natural Gas, Specification Used Oil	2605C 2610C1	2610S1	Water	Steam	Opacity	Continuous	Quarterly	Std. 1/ Title V
3705	modify	No. 2 Combination Boiler	420-710 MMBtu/hr	Biomass, TDF, Residual Oil, Natural Gas, Specification Used Oil	3705C 2610C2	2610S2	Water	Steam	Opacity	Continuous	Quarterly	Std. 1/ Title V

Bureau of Air Quality Construction Permit Application Control Devices Page 1 of 1

A. APPLICATION IDENTIFICATION						
1. Facility Name: Resolute FP US, Inc.						
2. SC Air Permit Number (8-digits only): 2440 - 0005	3. Application Date: April 14, 2014					

					B. CONT	ROL DEVI	CE INFORM	IATION					
1. Control Device ID	2. Action	3. Pollutants Controlled (Include CAS#)	4. Control Device Description	5. Maximum Design Capacity (Units)	6. Fuels Combusted	7. Inherent/ Required/ Voluntary (Explain)	8. Capture System Efficiency and Description	9. Destruction/ Removal Efficiency Determination	10. Pollutant(s)/ Parameter(s) Monitored	11. Averaging Period(s)	12. Monitoring Frequency	13. Reporting Frequency	14. Monitoring/ Reporting Basis
CD – 2605C	Modify	PM/ PM ₁₀ /PM _{2.5}	multi-clone	296,000 acfm	NA	inherent	> 99.9 closed duct	85/75/50 AP-42	NA	NA	NA	NA	NA
CD – 2610C1	Modify	PM/ PM ₁₀ /PM _{2.5}	multi-clone	394,000 acfm	NA	inherent	> 99.9 closed duct	85/75/50 AP-42	NA	NA	NA	NA	NA
CD – 3705C	Modify	PM/ PM ₁₀ /PM _{2.5}	ESP	296,000 acfm	NA	required	> 99.9 closed duct	99.5/99/95 AP-42	Opacity	6-min	COMS	Quarter	Std. 1/ Title V
CD – 2610C2	Modify	PM/ PM ₁₀ /PM _{2.5}	ESP	394,000 acfm	NA	required	> 99.9 closed duct	99.5/99/95 AP-42	Opacity	6-min	COMS	Quarter	Std. 1/ Title V
CD -													
CD -													
CD -													
CD -													
CD -													
CD -													

Bureau of Air Quality Construction Permit Application Emissions Page 1 of 2

A. APPLICATION IDENTIFICATION							
	1. Facility Name: Resolute FP US, Inc.						
4, 2014	2. SC Air Permit Number (8-digits only): 2440 - 0005						
4, 2014	2. SC Air Permit Number (8-digits only): 2440 - 0005						

B. ATTACHMENTS							
1. Sample Calculations, Emission Factors Used, etc.	2. Detailed Explanation of Assumptions, Bottlenecks, etc.						
3. Supporting Information: Manufacturer's Data, etc.	4. Source Test Information						
5. Details on Limits Being Taken for Limited Emissions	6. NSR Analysis						

C. SUMMARY OF PROJECT	TED CHANGE IN	FACILITY WII	DE POTENTIAI	EMISSIONS		
(0	alculated at maxim	num design capacit	ty.)			
	2. E r	nission Rates Pri	or to	3. E	Emission Rates A	fter
1. Pollutants	Construction	on / Modification	(tons/year)	Construction	on / Modification	(tons/year)
	Uncontrolled	Controlled	Limited	Uncontrolled	Controlled	Limited
Particulate Matter (PM)	124,478	1,861	NA	124,478	1,861	NA
Particulate Matter <10 Microns (PM ₁₀)	84,313	1,200	NA	84,313	1,200	NA
Particulate Matter <2.5 Microns (PM _{2.5})	73,016	1,015	NA	73,016	1,015	NA
Sulfur Dioxide (SO ₂)	24,178	22,719	NA	24,178	22,719	NA
Nitrogen Oxides (NO _x)	3,721	3,721	NA	3,721	3,721	NA
Carbon Monoxide (CO)	4,077	4,077	NA	4,077	4,077	NA
Volatile Organic Compounds (VOC)	10,105	1,895	NA	10,105	1,895	NA
Lead (Pb)	0.72	0.72	NA	0.72	0.72	NA
Greenhouse Gases (Mass Basis)	5,518,784	5,518,784	NA	5,518,784	5,518,784	NA
Greenhouse Gases (CO ₂ e Basis)	4,337,209	4,337,209	NA	4,337,209	4,337,209	NA
Highest HAP Prior to Construction (CAS #: 67561)	6,382	867	NA	6,382	867	NA
Highest HAP After Construction (CAS #: 67651)	6,382	867	NA	6,382	867	NA
Total HAP Emissions*	6,839	1,159	NA	6,839	1,159	NA

(*All HAP emitted from the various equipment or processes must be listed in the appropriate "Table D. Potential Emission Rates at Maximum Design Capacity.")

Bureau of Air Quality Construction Permit Application Emissions Page 2 of 2

		D. I	POTENTIAL EMISSION RATES AT MAX	KIMUM DES	IGN CAPAC	CITY			
1. Equipment	2. Emission	3. Pollutants	4. Calculation Methods / Limits Taken /	5. Unco	ntrolled	6. Con	trolled	7. Li i	mited
ID / Process ID	Point ID	(Include CAS #.)	Other Comments	lbs/hr	tons/yr	lbs/hr	tons/yr	lbs/hr	tons/yr
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S1 and 2610S2	PM	See Attachment B	Attachment	Attachment	Attachment	Attachment	Attachment	Attachment
	201032			В	В	В	В	В	В
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S1 and 2610S2	PM_{10}	See Attachment B	Attachment	Attachment	Attachment	Attachment	Attachment	Attachment
	201032			В	В	В	В	В	В
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S1 and 2610S2	$PM_{2.5}$	See Attachment B	Attachment	Attachment	Attachment	Attachment	Attachment	Attachment
	201032			В	В	В	В	В	В
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S2	SO_2	See Attachment B	Attachment	Attachment	Attachment	Attachment	Attachment	Attachment
	201052			В	В	В	В	В	В
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S1 and 2610S2	NO_X	See Attachment B	Attachment	Attachment	Attachment	Attachment	Attachment	Attachment
	201052			В	В	В	В	В	В
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S2	CO	See Attachment B	Attachment	Attachment	Attachment	Attachment	Attachment	Attachment
	201052			В	В	В	В	В	В
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S2	VOC	See Attachment B	Attachment	Attachment	Attachment	Attachment	Attachment	Attachment
	201052			В	В	В	В	В	В
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S2	Lead	See Attachment B	Attachment	Attachment	Attachment	Attachment	Attachment	Attachment
	201052			В	В	В	В	В	В
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S2	GHG	See Attachment B	Attachment	Attachment	Attachment	Attachment	Attachment	Attachment
	201052			В	В	В	В	В	В
	2610S1 and			See	See	See	See	See	See
2605 and 3705	2610S2	HAPs	See Attachment B	Attachment	Attachment	Attachment			Attachment
	201002			В	В	В	В	В	В

Bureau of Air Quality Construction Permit Application Regulatory Review Page 1 of 3

	A. APPLICATION IDENTIFICATION	
1. Facility Name: Resolute FP US, Inc.		
2. SC Air Permit Number (8-digits only): 2440 - 0005	3. Application Date: April 14, 2014	

B. SOU	JTH CAI	ROLINA	AIR POLLUTION CONTROL RE	GULATIONS AND STANDARDS	
			ted below add any additional regulation		
	2. App	licable		ts, work practices, monitoring, reco	
1. Regulation	Yes	No	3. Explain Applicability Determination	4. List the specific limitations and/or requirements that apply.	5. How will compliance be demonstrated?
Regulation 61-62.1, Section II(E) Synthetic Minor Construction Permits		\boxtimes	facility is Title V source		
Regulation 61-62.1, Section II(G) Conditional Major Operating Permits		\boxtimes	facility is Title V source		
Regulation 61-62.5, Standard No. 1 Emissions from Fuel Burning Operations	\boxtimes		applicable to fuel burning operations		
Regulation 61-62.5, Standard No. 2 Ambient Air Quality Standards	Regulation 61-62.5, Standard No. 2		applies to all sources	none	modeling demonstration not required, previously modeled emission rate exceeds projected emissions due to project
Regulation 61-62.5, Standard No. 3 Waste Combustion and Reduction	\boxtimes		specification used oil is combusted	oil sampling/testing per regulation	previous sampling/testing demonstrates compliance
Regulation 61-62.5, Standard No. 3.1 Hospital, Medical, Infections Waste Incinerators (HMIWI)		\boxtimes	no hazardous waste combusted		
Regulation 61-62.5, Standard No. 4 Emissions from Process Industries		\boxtimes	not a process source		
Regulation 61-62.5, Standard No. 5 Volatile Organic Compounds		\boxtimes	not a regulated activity		
Regulation 61-62.5, Standard No. 5.1 BACT/LAER Applicable to VOC		\boxtimes	not a regulated activity		
Regulation 61-62.5, Standard No. 5.2 Control of Oxides of Nitrogen		\boxtimes	project is not a burner modification		
Regulation 61-62.5, Standard No. 7 Prevention of Significant Deterioration		\boxtimes	no emission increase		

Bureau of Air Quality Construction Permit Application Regulatory Review Page 2 of 3

B. SOUTH CAROLINA AIR POLLUTION CONTROL REGULATIONS AND STANDARDS (If not listed below add any additional regulations that are triggered.) 1. Regulation 1. Legical limits, work practices, mointains at List the specific limitations and/or requirements that apply. 2. List the specific limitations and/or requirements that apply. 3. Regulation 3.												
					rd keeping, etc.							
1. Regulation	C. 40 CFR PART 60 - STAN (If not listed a very large and urces Not In not li		•	•								
		\boxtimes	attainment area									
		\boxtimes	does not apply to MACT sources									
		\boxtimes	not a regulated activity									
		\boxtimes	not a regulated activity									
	\boxtimes		facility has Title V operating permit									
		\boxtimes	not a regulated activity									
		\boxtimes										
Regulation 61-62.99 Nitrogen Oxides Budget Program Requirements for Stationary Sources Not In the Trading Program		\boxtimes	not a regulated activity									
C 40 OF	D D A D/E	60 CMT	NEADER OF PERSONALIZE RO		a a							
C. 40 CF			ANDARDS OF PERFORMANCE FOR the delow add any additional regulation		8							
				ts, work practices, monitoring, reco	rd keeping, etc.							
1. Subpart and Title	Yes	No	3. Explain Applicability Determination	4. List the specific limitations and/or requirements that apply.	5. How will compliance be demonstrated?							
Subpart A - General Provisions		\boxtimes	project exempt from definition of modification									

Bureau of Air Quality Construction Permit Application Regulatory Review Page 3 of 3

D. 40 CFR F	D. 40 CFR PART 61 - NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (If not listed below add any additional regulations that are triggered.) 2. Applicable Include all limits, work practices, monitoring, record keeping, etc. Yes No 3. Explain Applicability 4. List the specific limitations and/or requirements that apply. Subpart A - General Provisions												
		`			rd keeping, etc.								
1. Subpart and Title			3. Explain Applicability	Include all limits, work practices, monitoring, record keeping, pplicability 4. List the specific limitations and/or requirements that apply. FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEO additional regulations that are triggered.) Include all limits, work practices, monitoring, record keeping, applicability ination All List the specific limitations and/or requirements that apply. Include all limits in the specific limitations and/or requirements that apply. Include all limits, work practices, monitoring, record keeping, and and and and and and application future compliance date future compliance date future compliance date future spliance	5. How will compliance be								
Subpart A - General Provisions		\boxtimes	not a regulated activity										
E. 40 CFR PART 63 - NATI	ONAL E	EMISSIO	N STANDARDS FOR HAZARDO	US AIR POLLUTANTS FOR SOUR	CE CATEGORIES								
	(If not listed below add any additional regulations that are triggered.)												
	2. App	licable	Include all limi	d keeping, etc.									
1. Subpart and Title	Yes	No			•								
Subpart A - General Provisions	\boxtimes		future compliance date	future compliance date	future compliance date								
Subpart DDDDD – Industrial Boiler MACT	\boxtimes		future compliance date	future compliance date	future compliance date								
			F. OTHER										
(If not listed below	add any	additiona	l regulations, enforcement requiremen	t, permitting requirement, etc. that are	triggered.)								
	2. App	licable	Include all limi	its, work practices, monitoring, reco	rd keeping, etc.								
1. Regulation and Title / Other	Yes	(If not listed below add any additional regulation Applicable			5. How will compliance be demonstrated?								
40 CFR Part 64 - Compliance Assurance Monitoring (CAM)			regulated by MACT										

ATTACHMENT B EMISSION CALCULATIONS

No. 1Combination Boiler Example Calculations

No. 1 Combination Boiler actual heat input = 2,504,956 MMBtu/yr (January 2012 – December 2013)

Particulate Matter

Engineering stack test average emission factor = 0.27 lb/MMBtu 0.27 lb/MMBtu $\times 2,504,956$ MMBtu/yr $\times 1$ ton/2,000 lb = 338 tpy

Particulate Matter less than 10 microns (PM₁₀)

AP-42 emission factor ratio = 0.4 lb PM₁₀/MMBtu \div 0.054 lb PM/MMBtu = 74% PM₁₀ emission factor = 0.27 lb PM/MMBtu× 0.74 = 0.20 lb PM₁₀/MMBtu 0.20 lb/MMBtu × 0.50 km/s 0.50 lb/MMBtu × 0.50 km/s 0.50 km/s

Particulate Matter less than 2.5 microns (PM_{2.5})

AP-42 emission factor ratio = 0.35 lb $PM_{2.5}/MMBtu \div 0.054$ lb PM/MMBtu = 65% $PM_{2.5}$ emission factor = 0.27 lb $PM/MMBtu \times 0.65 = 0.18$ lb $PM_{2.5}/MMBtu$ 0.18 lb/MMBtu \times 2,504,956 MMBtu/yr \times 1 ton/2,000 lb = 219 tpy

Condensible Particulate Matter (CPM)

AP-42 emission factor = 0.017 lb CPM/MMBtu 0.017 lb/MMBtu $\times 2,504,956$ MMBtu/yr $\times 1$ ton/2,000 lb = 21 tpy

Sulfur Dioxide

Engineering stack test average emission factor = 0.91 lb/MMBtu 0.91 lb/MMBtu $\times 2,504,956$ MMBtu/yr $\times 1$ ton/2,000 lb = 1,140 tpy

Nitrogen Dioxide

Engineering stack test average emission factor = 0.31 lb/MMBtu 0.31 lb/MMBtu \times 2,504,956 MMBtu/yr \times 1 ton/2,000 lb = 388 tpy

Carbon Monoxide

Engineering stack test average emission factor = 0.47 lb/MMBtu 0.47 lb/MMBtu $\times 2,504,956$ MMBtu/yr $\times 1$ ton/2,000 lb = 589 tpy

Volatile Organic Compounds

AP-42 emission factor = 0.017 lb/MMBtu 0.017 lb/MMBtu $\times 2,504,956$ MMBtu/yr $\times 1$ ton/2,000 lb = 21 tpy

Lead

AP-42 emission factor = 4.80E-05 lb/MMBtu 4.80E-05 lb/MMBtu × 2,504,956 MMBtu/yr × 1 ton/2,000 lb = 0.06 tpy

Carbon Dioxide

EPA MRR emission factor = 93.8 kg/MM Btu $93.8 \text{ kg/}10^6 \text{ Btu} \times 1 \text{ lb/}0.4536 \text{ kg} \times 2,504,956 \text{ MMBtu/yr} \times 1 \text{ ton/}2,000 \text{ lb} = 259,000 \text{ tpy}$

Methane

EPA MRR emission factor =0.032 kg/MM Btu $0.032 \text{ kg/10}^6 \text{ Btu} \times 1 \text{ lb/0.4536 kg} \times 2,504,956 \text{ MMBtu/yr} \times 1 \text{ ton/2,000 lb} = 88 \text{ tpy}$

Nitrous Oxide

EPA MRR emission factor = 0.0042 kg/MM Btu $0.0042 \text{ kg/10}^6 \text{ Btu} \times 1 \text{ lb/0.4536 kg} \times 2,504,956 \text{ MMBtu/yr} \times 1 \text{ ton/2,000 lb} = 12 \text{ tpy}$

Table B-1
Emission Calculations and PSD Applicability

			No. 10	Combination	Boiler					No. 2 (Combination	Boiler			Total
			Baseline*	Baseline	Projected	Projeted	Emission			Baseline*	Baseline	Projected	Projeted	Emission	Emission
	Emissio	n Factor	Heat Input	Emissions	Heat Input	Emissions	Increase	Emissio	n Factor	Heat Input	Emissions	Heat Input	Emissions	Increase	Increase
Pollutant	(lb/MMBtu)	Reference	(MMBtu/yr)	(tpy)	(MMBtu/yr)	(tpy)	(tpy)	(lb/MMBtu)	Reference	(MMBtu/yr)	(tpy)	(MMBtu/yr)	(tpy)	(tpy)	(tpy)
PM	0.27	Test	2,504,956	338	2,504,956	338	0	0.23	Test	3,341,062	384	3,341,062	384	0	0
PM ₁₀	0.20	AP-42**	2,504,956	250	2,504,956	250	0	0.17	AP-42**	3,341,062	285	3,341,062	285	0	0
PM _{2.5}	0.18	AP-42**	2,504,956	219	2,504,956	219	0	0.15	AP-42**	3,341,062	249	3,341,062	249	0	0
CPM	0.017	AP-42**	2,504,956	21	2,504,956	21	0	0.017	AP-42**	3,341,062	28	3,341,062	28	0	0
SO ₂	0.91	Test	2,504,956	1,140	2,504,956	1,140	0	0.77	Test	3,341,062	1,286	3,341,062	1,286	0	0
NO _X	0.31	Test	2,504,956	388	2,504,956	388	0	0.29	Test	3,341,062	484	3,341,062	484	0	0
CO	0.47	Test	2,504,956	589	2,504,956	589	0	0.91	Test	3,341,062	1,520	3,341,062	1,520	0	0
VOC	0.017	AP-42**	2,504,956	21	2,504,956	21	0	0.017	AP-42**	3,341,062	28	3,341,062	28	0	0
Pb	4.80E-05	AP-42**	2,504,956	0.06	2,504,956	0.06	0	4.80E-05	AP-42**	3,341,062	0.08	3,341,062	0.08	0	0
	kg/MMBtu							kg/MMBtu							
CO ₂	93.8	MRR**	2,504,956	259,000	2,504,956	259,000	0	93.8	MRR**	3,341,062	345,449	3,341,062	345,449	0	0
CH ₄	0.032	MRR**	2,504,956	88	2,504,956	88	0	0.032	MRR**	3,341,062	118	3,341,062	118	0	0
N ₂ O	0.0042	MRR**	2,504,956	12	2,504,956	12	0	0.0042	MRR**	3,341,062	15	3,341,062	15	0	0
CO ₂ mass				259,100		259,100	0				345,583		345,583	0	0
CO ₂ equiv.				264,665		264,665	0				353,005		353,005	0	0
	neat input Ja	•													
** Biomass	Siomass factors (PM ₁₀ and PM _{2.5} by ratio of factors)														

Table B-2
No. 1Combination Boiler – Fuel Firing and Heat Input Data

						Conversion	on Factors		
					Bark	No. 6 Oil	Gas	TDF	
					Btu/lb	btu/gal	btu/cf	btu/lb	
					4,500	150,000	1,020	15,500	
		Combination	Boiler No. 1			Combination	Boiler No. 1		
	Bark	No. 6 Oil	Gas	TDF	Bark	No. 6 Oil	Gas	TDF	TOTAL
Month	(tons)	(gallons)	(MMBtu)	(tons)	(MMBtu)	(MMBtu)	(MMBtu)	(MMBtu)	(MMBtu)
Jan-12	22,045	8,844	4,037	283	198,402	1,327	4,037	8,787	212,553
Feb-12	22,738	3,573	3,412	274	204,645	536	3,412	8,492	217,085
Mar-12	22,350	2,657	4,811	283	201,148	398	4,811	8,779	215,137
Apr-12	24,350	6,089	6,936	400	219,154	913	6,936	12,397	239,400
May-12	20,780	18,815	10,388	334	187,019	2,822	10,388	10,347	210,577
Jun-12	15,307	0	2,988	135	137,765	0	2,988	4,175	144,927
Jul-12	15,230	1,560	9,341	257	137,067	234	9,341	7,956	154,598
Aug-12	22,275	682	6,850	311	200,478	102	6,850	9,649	217,080
Sep-12	22,788	0	4,138	239	205,092	0	4,138	7,407	216,637
Oct-12	21,278	0	7,255	263	191,506	0	7,255	8,139	206,900
Nov-12	25,163	6,940	9,153	321	226,466	1,041	9,153	9,953	246,613
Dec-12	23,348	4,555	6,033	402	210,135	683	6,033	12,461	229,312
Jan-13	24,563	1,350	7,317	447	221,064	203	7,317	13,847	242,430
Feb-13	22,660	1,656	6,177	387	203,939	248	6,177	12,003	222,368
Mar-13	23,326	0	26,980	450	209,934	0	26,980	13,959	250,873
Apr-13	18,522	0	8,044	329	166,702	0	8,044	10,213	184,960
May-13	18,565	0	6,888	395	167,089	0	6,888	12,240	186,217
Jun-13	13,814	0	9,997	308	124,329	0	9,997	9,548	143,874
Jul-13	20,137	0	6,116	134	181,236	0	6,116	4,149	191,501
Aug-13	19,914	0	9,013	392	179,225	0	9,013	12,143	200,381
Sep-13	19,727	2,850	6,479	181	177,539	427	6,479	5,601	190,047
Oct-13	22,000	1,825	16,785	314	197,999	274	16,785	9,743	224,801
Nov-13	21,255	16,587	3,845	255	191,296	2,488	3,845	7,895	205,525
Dec-13	24,384	1,224	26,993	306	219,455	184	26,993	9,485	256,117
24-month Tot	tal								5,009,912
Annual Avera	ge								2,504,956

Table B-3
No. 2Combination Boiler – Fuel Firing and Heat Input Data

						Conversion	on Factors		
					Bark	No. 6 Oil	Gas	TDF	
					Btu/lb	btu/gal	btu/cf	btu/lb	
					4,500	150,000	1,020	15,500	
		Combination	Boiler No. 1			Combination	Boiler No. 1		
	Bark	No. 6 Oil	Gas	TDF	Bark	No. 6 Oil	Gas	TDF	TOTAL
Month	(tons)	(gallons)	(MMBtu)	(tons)	(MMBtu)	(MMBtu)	(MMBtu)	(MMBtu)	(MMBtu)
Jan-12	33,852	23,612	9,482	435	304,668	3,542	9,482	13,493	331,185
Feb-12	31,327	7,372	4,349	377	281,943	1,106	4,349	11,699	299,096
Mar-12	28,436	4,456	8,713	360	255,921	668	8,713	11,170	276,472
Apr-12	29,988	8,633	16,269	492	269,892	1,295	16,269	15,267	302,723
May-12	29,433	66,534	19,286	473	264,894	9,980	19,286	14,656	308,816
Jun-12	30,607	266	9,968	269	275,465	40	9,968	8,348	293,821
Jul-12	27,342	0	3,440	461	246,078	0	3,440	14,284	263,802
Aug-12	23,481	0	9,219	328	211,326	0	9,219	10,171	230,716
Sep-12	24,653	0	9,693	259	221,875	0	9,693	8,014	239,582
Oct-12	31,955	0	12,519	394	287,593	0	12,519	12,223	312,335
Nov-12	26,136	64,710	32,566	333	235,226	9,706	32,566	10,338	287,837
Dec-12	30,605	18,704	24,391	527	275,441	2,806	24,391	16,333	318,971
Jan-13	30,716	9,784	34,023	559	276,447	1,468	34,023	17,316	329,254
Feb-13	25,278	15,751	22,240	432	227,501	2,363	22,240	13,390	265,494
Mar-13	29,986	2,368	37,355	579	269,876	355	37,355	17,945	325,532
Apr-13	26,035	1,284	11,650	463	234,318	193	11,650	14,356	260,516
May-13	26,112	0	12,931	555	235,010	0	12,931	17,216	265,157
Jun-13	22,250	667	34,428	496	200,251	100	34,428	15,379	250,157
Jul-13	21,627	0	13,146	144	194,646	0	13,146	4,456	212,248
Aug-13	21,992	0	12,793	433	197,932	0	12,793	13,411	224,135
Sep-13	28,321	0	13,219	259	254,888	0	13,219	8,041	276,148
Oct-13	22,246	6,162	15,606	318	200,211	924	15,606	9,852	226,594
Nov-13	27,059	0	6,667	324	243,532	0	6,667	10,051	260,251
Dec-13	28,973	3,838	48,680	364	260,757	576	48,680	11,271	321,284
24-month To	tal								6,682,125
Annual Avera	ige								3,341,062

Table B-4
No. 1 Combination Boiler – Engineering Stack Test Summary

						Cor	version Fac	tors		
						Bark	4,500	Btu/lb		
						Nat. Gas	1,020	Btu/ft3		
						#6 Oil	150,000	Btu/gal		
Test Parameter	Units	AVG	Test 1: Grate only	,	Test 3: Grate w/o NCGs	Test 4: Grate w/o NCGs	Test 5: Grate + Oil	Test 6: Grate + Oil	Test 7: Grate + NG	Test 8: Grate + NG
Bark Flow	10 ³ lb/hr	77.77	83.67	75.19	72.61	75.01	92.22	91.26	66.56	65.64
Natural Gas Flow	10 ³ ft ³ /hr	30.03							29.38	30.67
Fuel Oil Flow	gal/min	10.97					11.61	10.33		
Heat Input	MMBtu/hr	382.3	376.5	338.4	326.7	337.5	519.5	503.6	329.5	326.7
Steam Leaving SH	10 ³ lb/hr	240.04	232.55	206.21	202.40	206.60	272.46	261.29	270.99	267.83
Stack Gas Flow	dscfm	130,082	118,290	123,885	106,688	109,632	140,312	139,007	153,606	149,237
O ₂ Leaving Stack	% vol, dry	10.1	9.4	10.4	9.4	9.5	9.6	10.3	10.8	11.2
Stack Temperature	deg F	387	381	382	358	357	392	396	414	412
Particulate at Stack	gr/ft ³	0.085	0.040	0.033	0.016	0.012	0.124	0.156	0.222	0.079
Particulate at Stack	lb/hr	104	40	35	15	11	149	186	292	101
Particulate at Stack	lb/MMBtu	0.27	0.11	0.10	0.05	0.03	0.29	0.37	0.89	0.31
Nitrogen Oxides at Stack	ppm	126	139	138	114	111	123	142	124	114
Nitrogen Oxides at Stack	lb/hr	117	118	122	87	87	124	141	136	122
Nitrogen Oxides at Stack	lb/MMBtu	0.31	0.31	0.36	0.27	0.26	0.24	0.28	0.41	0.37
Sulfur Dioxide at Stack	ppm	264	371	389	13	18	419	395	255	253
Sulfur Dioxide at Stack	lb/hr	357	438	481	14	20	586	548	391	377
Sulfur Dioxide at Stack	lb/MMBtu	0.91	1.16	1.42	0.04	0.06	1.13	1.09	1.19	1.15
Carbon Monoxide at Stack	ppm	323	189	148	555	838	262	268	194	131
Carbon Monoxide at Stack	lb/hr	172	98	80	258	400	160	162	130	85
Carbon Monoxide at Stack	ppm @ 3%	522	294	252	864	1,316	415	453	344	242
Carbon Monoxide at Stack	lb/MMBtu	0.47	0.26	0.24	0.79	1.19	0.31	0.32	0.39	0.26

Table B-5
No. 2 Combination Boiler – Engineering Stack Test Summary

Summary of Boiler MACT Er	ngineering St	ack Test Dat	a						
No. 2 Combination Boiler									
					Con	version Fac	tors		
					Bark	4,500	Btu/lb		
					Nat. Gas	1,020	Btu/ft3		
					#6 Oil	150,000	Btu/gal		
Test Parameter	Units	AVG	Test 1: Grate only	Test 2: Grate only	Test 3: Grate + NG	Test 4: Grate + NG	Test 5: Grate + Oil	Test 6: Grate + Oil	
Bark Flow	10 ³ lb/hr	100.57	99.4	94.2	96.1	88.5	113.8	111.4	
Natural Gas Flow	10 ³ ft ³ /hr	219.20			221	217.4			
Fuel Oil Flow	gal/min	15.90					15.6	16.2	
Heat Input	MMBtu/hr	546.1	447.3	423.9	657.9	448.2	652.5	647.1	
Steam Leaving SH	10 ³ lb/hr	298.50	217.1	208.9	351	321.7	347	345.3	
Stack Gas Flow	dscfm	203,000	208,000	207,000	188,000	187,000	220,000	208,000	
O ₂ Leaving Stack	% vol, dry	12.6	14.6	14.6	11.1	11.9	12.0	11.6	
Stack Temperature	deg F	406	381	388.2	420.6	415.3	410.5	419.9	
Particulate at Stack	gr/ft ³	130	125	45	115	116	136	244	
Particulate at Stack	lb/hr	0.075	0.0699	0.0255	0.0712	0.0725	0.072	0.1367	
Particulate at Stack	lb/MMBtu	0.23	0.28	0.11	0.17	0.26	0.21	0.38	
Nitrogen Oxides at Stack	ppm	104	108	94	85	97	124	116	
Nitrogen Oxides at Stack	lb/hr	152	161	139	114	130	195	173	
Nitrogen Oxides at Stack	lb/MMBtu	0.29	0.36	0.33	0.17	0.29	0.30	0.27	
Sulfur Dioxide at Stack	ppm	211	128	148	163	147	331	347	
Sulfur Dioxide at Stack	lb/hr	433	266	305	305	274	726	720	
Sulfur Dioxide at Stack	lb/MMBtu	0.77	0.59	0.72	0.46	0.61	1.11	1.11	
Carbon Monoxide at Stack	ppm	544	557	573	1159	701	123	149	
Carbon Monoxide at Stack	lb/hr	466	506	516	948	571	118	135	
Carbon Monoxide at Stack	ppm @ 3%	1,209	1,583	1,628	2,117	1,394	247	287	
Carbon Monoxide at Stack	lb/MMBtu	0.91	1.13	1.22	1.44	1.27	0.18	0.21	

Table B-6 No. 1 Combination Boiler – Biomass Emission Calculations

						1					
1. & 2. PROCESS EMISSION SOURCE	MAXIMUM	PRODUCTION	ACTUAL	PRODUCTION	MAXIMUM	MAXIMUM	MAXIMUM	ACTUAL			
1. & 2. PROCESS EMISSION SOURCE	PRODUCTION	UNITS	PRODUCTION	UNITS	HOURS PER DAY	DAYS PER WEEK	DAYS PER YEAR	DAYS PER YEAR			
Combination Boiler 1 - Wood Waste	392	MM Btu/hr	254	MM Btu/hr	24	7	365	362			
AEI Group ID = 008, Process Unit ID = 5	392	IVIIVI DIU/III	234	IVIIVI DIU/III	24	/	303	302			
Title V Unit ID = 08. Equipment ID = 2605								6. MAX	(IMLIM	7. MAX	IMI IM
THE VOILE = 00. Equipment is = 2000						PROCESS	CONTROL	UNCONT		CONTRO	
			8 EMISSI	ON FACTOR INFO		VARIABILITY	EFFICIENCY	EMISS		EMISS	
3. POLLUTANT	4. CAS #	5. TYPE	VALUE	UNITS	BASIS	FACTOR	LITICILING	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Filterable particulate matter	4. 0/10 #	0. TH E	2.70E-01	#/MM Btu	0	1	99%	10.584.00	46,357.92	105.84	463.58
Filterable particulate matter < 10 microns		Criteria	2.00E-01	#/MM Btu	P	1	99%	7,840.00	34,339.20	78.40	343.39
Filterable particulate matter < 2.5 microns		Criteria	1.80E-01	#/MM Btu	P	1	99%	7,056.00	30,905.28	70.56	309.05
Condensible particulate matter < 2.5 microns		Criteria	1.70E-02	#/MM Btu	A	1	3370	6.66	29.19	6.66	29.19
Total paticulate matter		Cinteria	1.70L-02	#/IVIIVI Dia		1		10,590.66	46,387.11	112.50	492.77
Total particulate matter < 10 microns		Criteria				1		7,846.66	34,368.39	85.06	372.58
Total particulate matter < 2.5 microns		Criteria				1		7,062.66	30,934.47	77.22	338.24
Sulfur dioxide	7446095	Criteria	2.50E-02	#/MM Btu	В	1		9.80	42.92	9.80	42.92
Volatile organic compounds (as carbon)	7440033	Criteria	1.30E-02	#/MM Btu	F	1		5.10	22.32	5.10	22.32
Volatile organic compounds (as VOC)		Criteria	1.30E-02	#/MM Btu	K	2.5		12.74	55.80	12.74	55.80
			1.30E-02	#/IVIIVI DIU	N N	2.5				4.38	
Volatile organic compounds (sum of VOC)		Criteria	4.705.04	"AMADE:	0 0	1		4.38 184.24	19.20 806.97	184.24	19.20 806.97
Carbon monoxide	1	Criteria	4.70E-01	#/MM Btu							
Lead	1	Criteria	7.40E-06	#/MM Btu	G	1		0.00	0.01	0.00	0.01
Nitrogen oxides	 	Criteria	3.10E-01	#/MM Btu	0	1		121.52	532.26	121.52	532.26
Carbon dioxide	124389	GHG	0.005 -:		,	1		0.00			
Biogenic carbon dioxide	124389	GHG	9.38E+01	kg/MM Btu	L	1		81,061.73	355,050.37	81,061.73	355,050.37
Methane	74828	GHG, (112r)	3.20E-02	kg/MM Btu	L	1		27.65	121.13	27.65	121.13
Nitrous oxide	10024972	GHG	4.20E-03	kg/MM Btu	L	1		3.63	15.90	3.63	15.90
Carbon dioxide equivalent		GHG			М	1		82,767.65	362,522.33	82,767.65	362,522.33
Chlorine dioxide	10049044	112r				1					
Sulfuric acid mist	7664939	TAP				1					
Hydrogen Sulfide	7783064	NSPS, TAP	0.0E+00			1					
Total Reduced Sulfur (as TRS)		NSPS	0.0E+00	#/MM Btu	E	1		0.00	0.00	0.00	0.00
Total Reduced Sulfur (as Sulfur)		NSPS	0.0E+00	#/MM Btu	Е	1		0.00	0.00	0.00	0.00
Total Reduced Sulfur (as Hydrogen Sulfide)		NSPS	0.0E+00	#/MM Btu	E	1		0.00	0.00	0.00	0.00
Total 112(b) Hazardous Air Pollutants								1.61	7.05	1.61	7.05
8. REFERENCES:											
A) Emission factors from AP-42 - Table 1.6-1, Bark	/Wood-fired Boile	er with ESP.									
B) Emission factors from AP-42 Table 1.6-2.											
C) Emission factors from AP-42 Table 1.6-3.											
D) Emission factors from AP-42 Table 1.6-4.											
E) Median emission factors from NCASI Technical	Bulletin No. 701 -	Table 19A, Woo	d-fired Boilers.								
F) Emission factors from NCASI Technical Bulletin	858, Table 20A.										
G) Emission factors from NCASI Technical Bulletin		Fabric Filter/ESF	except Aq, P,	and Th wet scrubb	per - no ESP fac	ctor).					
H) Average emission factors from NCASI Technica							#/MM Btu assum	ing 9 MM Btu/TW	WF.		
Average emission factors from NCASI Technical											
J) Average emission factors from NCASI Technical											
K) Primary VOC assumed to be formaldehyde.											
L) Emission factor for wood and wood residuals cor	nbustion in EPA N	MRR. Table C-1 a	and C-2.			1					
M) Emission factor based on GWP in EPA MRR, Ta		,									
N) VOC emissions are sum of individual speciated											
O) Average emission factor from October 2013 Boil											
P) PM emission factor multiplied by AP-42 ratio of F		I/PM2.5.									
, Inicolon actor manipiled by At 142 land of 1	with a direct living										
	-					†					
	-										
9. NOTES:											
J. 1401E3.	-										
Actual production is colorder uses 2011 assistant	roto										
Actual production is calendar year 2011 production						-					
Actual production is calendar year 2005 production	iatë.					-					
Maximum production is permitted production rate.		16.1			and the second	-					
Total reduced sulfur emission are the sum of emission						-					
Process variablity factors for metal compounds assu	ume conversion of	t elemental metal	to lowest state n	netal oxide, excep	ot HF.						
	-										

Table B-7
No. 1 Combination Boiler – Natural Gas Emission Calculations

1.4 PROCESS EMISSION SQUREE MANAMAN PRODUCTION MINTS PROLICE MINTS												
PRODUCTION LIMITS						MAXIMUM	MAXIMUM	MAXIMUM	ACTUAL			
ACTIVITIES	1. & 2. PROCESS EMISSION SOURCE											
AGI Group D - 2009 Process pit of D - 4 TRO YUNT D D - 2005	0 1: :: 5 :: 4 N : 10											
Title V LIP D - 0.8 Equipment D - 2005 S EUSSION FACTOR NETONAL TON PROCESS S EUSSION FACTOR NETONAL TON PROCESS S EUSSION FACTOR NETONAL TON PROCESS CONTROL NETONAL TON PR		405	MINI Btu/nr	ь	MINI Btu/nr	24	/	365	364			
PROCESS CONTROL LEG CONT									6 MAX	ZINAL INA	7 MAY	IN ALL IN A
BASISTON FACTOR NOTORNATION PROTORNATION PROT	Title V Official = 08. Equipment ib = 2005	_					DDOCECC	CONTROL				
S. POLUTIANT 4. CAS # S. TOPE VALUE UNITS BASS FACTOR (6hm) (00049) (by) (by) (by) (77 pt) (17				0 EMICCIO	NI EACTOR INIE	DMATION						
Fillende periouse mater 4 C micros C Cindia 1 906-03 AMM 89 8 1 1 0.77 3.37 0.77 Fillende periouse mater 4 C micros C Cindia 1 906-03 AMM 89 E 1 1 0.77 3.37 0.77 Fillende periouse mater 4 C micros C Cindia 1 906-03 AMM 89 E 1 1 0.77 3.37 0.77 Fillende periouse mater 4 C micros C Cindia 1 906-03 AMM 89 E 1 1 0.77 3.37 0.77 Fillende periouse mater 4 C micros C Cindia 1 906-03 AMM 89 E 1 1 0.77 3.37 0.77 Fillende periouse mater 4 C micros C C Cindia 1 906-03 AMM 89 E 1 1 0.77 3.37 0.77 Fillende periouse mater 4 C micros C C Cindia 1 0.00 Fillende Periouse C C Cindia 1 0.00 Fillende C C C Cindia 1 0.00 Fillende C C C C C C C C C C C C C C C C C C C	2 DOLLLITANT	4 040#	E TVDE					EFFICIENCY				(tons/yr)
Fillerate particular matter < 2 ministros		4. CA3 #	3. TIFE									3.37
Fillwards particulate matter < 2.5 microse Confessible particulate matter < 2.5 microse			Critoria									3.37
Contention Con												3.37
Total particulation member < 1 Onicorone Criteria 1 3.08 13.48 3.08 Total particulation member < 2.5 recorone Criteria 1 1 3.08 13.48 3.08 Total particulation member < 2.5 recorone 7.446005 Criteria 6.00E-04 MIAM Blu 8 1 3.08 13.48 3.08 Total particulation member < 2.5 recorone 7.446005 Criteria 6.00E-04 MIAM Blu 8 1 0.24 1.08 0.24 Total particulation member < 2.5 record 7.446005 Criteria 6.00E-04 MIAM Blu 8 1 0.24 1.09 0.24 Total particulation member < 1.00 Criteria 6.00E-04 MIAM Blu 8 1 0.24 1.09 0.24 Total particulation member < 1.00 Criteria 6.00E-04 MIAM Blu 8 1 0.24 1.09 0.24 Total particulation member < 1.00 Criteria 6.00E-04 MIAM Blu 8 1 0.24 1.09 0.25 Total particulation member < 1.00 Criteria 6.00E-04 MIAM Blu 8 1 0.00 0.00 0.00 Total particulation member 7.00 Criteria 6.00E-04 MIAM Blu A 1 1.00 0.00 0.00 Total particulation member 7.00 Criteria 2.00E-01 MIAM Blu A 1 1.00 0.00 0.00 Total particulation member 7.00 Criteria 2.00E-01 MIAM Blu A 1 1.00 0.00 0.00 Total particulation member 7.00 Criteria 2.00E-01 MIAM Blu A 1 1.00 0.00 0.00 Total particulation member 7.00 Criteria 7.00E-01 MIAM Blu A 1 1.00E-01 Total particulation member 7.00E-01 MIAM Blu A 1 0.00 0.00 0.00 Total particulation member 7.00E-01 MIAM Blu A 1 0.00 0.00 0.00 Total particulation member 7.00E-01 MIAM Blu A 1 0.00 0.00 0.00 Total particulation member 7.00E-01 MIAM Blu A 1 0.00 0.00 0.00 Total particulation member 7.00E-01 MIAM Blu A 1 0.00 0.00 0.00 Total particulation member 7.00E-01 MIAM Blu A 1 0.00 0.00 0.00 Total particulation member 7.00E-01 MIAM Blu A 1 0.00 0.00 0.00 Total particulation member 7.00E-01 MIAM Blu A 1 0.00 0.00 0.00 Total particulation												10.11
Total particular matter < 10 microrons Criterias Criterias Criterias 1 3.08 13.48 3.08 Sülfur dioxide 7.460905 Criterias 6.005-04 13.040 14 1 2.23 2.76 2.23 Volentia organic correpounds (ase curbon) Criterias 6.005-04 13.040 14 1 2.23 2.76 2.23 Volentia organic correpounds (ase curbon) Criterias 6.005-04 13.040 1 2.23 2.76 2.23 Volentia organic correpounds (ase curbon) Criterias 6.005-04 13.040 1 2.23 2.76 2.23 Volentia organic correpounds (ase or VC) Criterias 6.005-04 13.040 1 2.23 2.76 2.23 Volentia organic correpounds (ase or VC) Criterias 6.005-04 13.040 1 2.25 1 2.23 2.76 2.23 Volentia organic correpounds (ase or VC) Criterias 6.005-04 13.040 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 Volentia organic correpounds (ase or VC) Criterias 6.005-07 8.0040 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 Volentia organic correpounds (ase of VC) Criterias 6.005-07 8.0040 1 2.25 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 1 2.25 2.2			Cillella	3.70E-03	#/IVIIVI DIU	ь						13.48
Total particulate matter < 2.5 microrors Criteria Subtr dicade 1 3.08 3.08 3.08 5.08			Critorio									13.48
Silut accodes												13.48
Vosable organic compounds (as VOC)		7440005		6.005.04	#/MANA D4.	р	· ·					1.06
Volatile organic compounds (sur VOC)		7446095										
Vosable origans compounds (sum of VOC) Cinteria C												9.76
Carbon monoarde Criesia 8.06-02 RAMM Blu A 1 3.402 14.901 3.402 1.000 0.00 0				5.50E-03	#/MM Btu							24.39
Lead		1		0.405.00	# AAA * 5 *		· ·					20.47
Nitrogen outdooke Criteria 2,000-01 RMMB A 1 113,40 496,69 113,40 13,40 13,40 14		1										149.01
Carbon dioxide 124389 GHG 5:30E+01 kg/MM Btu I 1 1 47:39:29 207;346:07 47:39:29 Biggeric carbon dioxide 124389 GHG 100E+03 kg/MM Btu I 1 1 0.00 T		ļ										0.00
Biogenic carbon dioxide 124389	Nitrogen oxides	1	Criteria	2.80E-01	#/MM Btu	A	1		113.40	496.69	113.40	496.69
Biogenic carbon dioxide		ļ		<u> </u>			ļ					
Methane				5.30E+01	kg/MM Btu	I				207,346.07	47,339.29	207,346.07
Nitrous poside							· ·					
Carbon dioxide equivalent												3.91
Chlorine dioxide 10049044 112r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10024972		1.00E-04	kg/MM Btu		· ·					0.39
Sulfuria cald mist Pridrogen Sulfide Pridrogen S	Carbon dioxide equivalent		GHG			J	1		47,385.71	207,549.43	47,385.71	207,549.43
Sulfuria cald mist Pridrogen Sulfide Pridrogen S												
Hydrogen Sulfide T7783064 NSPS, TAP Total Reduced Sulfur (as TRS) NSPS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							· ·					
Total Reduced Sulfur (as TRS) NSPS 1 Total Reduced Sulfur (as Sulfur) NSPS 1 REFERENCES: A) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-1. B) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highset emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highset emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highset emission factors from AP-42 for Uncontrolled Valuer (Table 4c), Natural Gas-fired Utility Boilers. E) All particulte matter assumed to be less than 25, per AP-42. F) Primary VOC assumed to be formaldelyide. G) VOC emissions are sum of Individual speciated VOC. H) Emission factor for natural gas combustion in EPA MRR, Table 6-1 and C-2. J) Emission factor for matural gas combustion in EPA MRR, Table 6-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. Actual production is calendar year 2005 production rate. Maximum production is calendar year 2005 production rate.												
Total Reduced Sulfur (as Sulfur) Total Reduced Sulfur (as Hydrogen Sulfide) NSPS NSPS NSPS NSPS NSPS NSPS NSPS NSP		7783064										
Total 112(b) Hazardous Air Pollutants 8. REFERENCES: A) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-1. B) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-1. C) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from NCASI Tectrical Bulletin No. 650 (Table 4c), Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from NCASI Tectrical Bulletin No. 650 (Table 4c), Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from AP-42 for Uncontrolled Villity Large Industrial Natural Gas-fired Boilers - Table 1.4-4. F) Primary VOC assumed to be formaldehyde. G) VOC emissions are sum of individual speciated VOC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-2. P) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-2. P) Emission fac												
Total 112(b) Hazardous Air Pollutants 8. REFERENCES: A) Emission factors from AP-42 for Uncontrolled Utility Large Industrial Natural Gas-fired Boilers - Table 1.4-1. B) Emission factors from AP-42 for Uncontrolled Utility Large Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled Utility Large Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled Utility Large Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled Utility Large Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from NCASI Technical Bulletin No. 650 (Table 4c), Natural Gas-fired Utility Boilers. E) All particular matter assumed to be less than 2.5, per AP-42. F) Primary VOC assumed to be formaldehyde. G) VOC emissions are unfol individual speciated VOC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. D) Emission factor for natural gas combustion in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. 9. NOTES: Actual production is calendar year 2011 production rate. Actual production is calendar year 2015 production rate. Maximum production is calendar year 2005 production rate. Maximum production is calendar year 2005 production rate. Maximum production is calendar the town of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
8. REFERENCES: A) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-1. B) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from NCASI Technical Bulletin No. 650 (Table 4c), Natural Gas-fired Utility Boilers. E) All particulte matter assumed to be less than 2.5, per AP-42. F) Frimary VCG assumed to be formaldehyde G) VCC emissions are sum of individual speciated VCC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. B) Emission factor from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. B) Emission factor for matural gas combustion in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. 9. NOTES: Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is calendar year 2005 production rate. Maximum production is permitted production rate. Maximum production is permitted production rate.	Total Reduced Sulfur (as Hydrogen Sulfide)		NSPS				1					
8. REFERENCES: A) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-1. B) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled UtilityLarge Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from NCASI Technical Bulletin No. 650 (Table 4c), Natural Gas-fired Utility Boilers. E) All particulte matter assumed to be less than 2.5, per AP-42. F) Frimary VCG assumed to be formaldehyde G) VCC emissions are sum of individual speciated VCC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. B) Emission factor from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. B) Emission factor for matural gas combustion in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. 9. NOTES: Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is calendar year 2005 production rate. Maximum production is permitted production rate. Maximum production is permitted production rate.												
A) Emission factors from AP-42 for Uncontrolled Utility/Large Industrial Natural Gas-fired Boilers - Table 1.4-1. B) Emission factors from AP-42 for Uncontrolled Utility/Large Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from MP-42 for Uncontrolled Utility/Large Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from NCASI Technical Bulletin No. 650 (Table 4c), Natural Gas-fired Boilers. E) All particular matter assumed to be less than 2.5, per AP-42. F) Primary VOC assumed to be formaldehyde. G) VOC emissions are sum of Individual speciated VOC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. D) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. D) Emission factor for natural gas combustion in EPA MRR, Table C-1 and C-2. D) Emission factor based on GWP in EPA MRR, Table A-1. Solvential to the second of the se	Total 112(b) Hazardous Air Pollutants								0.87	3.81	0.87	3.81
A) Emission factors from AP-42 for Uncontrolled Utility/Large Industrial Natural Gas-fired Boilers - Table 1.4-1. B) Emission factors from AP-42 for Uncontrolled Utility/Large Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from PA-42 for Uncontrolled Utility/Large Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from NCASI Technical Bulletin No. 650 (Table 4c), Natural Gas-fired Boilers. E) All particular matter assumed to be less than 2.5, per AP-42. F) Primary VOC assumed to be formalderlyde. G) VOC emissions are sum of individual speciated VOC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. D) Emission factor from ratural gas combustion in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. B) Emission factor based on GWP in EPA MRR, Table A-1. Enission factor based on GWP in EPA MRR, Table A-1. S) NOTES: Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate be sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
B) Emission factors from AP-42 for Uncontrolled Utility/Large Industrial Natural Gas-fired Boilers - Table 1.4-2. C) Emission factors from AP-42 for Uncontrolled Utility/Large Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from NCASI Technical Bulletin No. 650 (Table 4c), Natural Gas-fired Utility Boilers. E) All particulte matter assumed to be less than 2.5, per AP-42. F) Primary VOC assumed to be formaldehyde. G) VOC emissions are sum of individual speciated VOC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. D) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. D) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. D) Emission factor based on GWP in EPA MRR, Table C-1 and C-2. D) Emission factor based on GWP in EPA MRR, Table A-1. Solution for natural gas combustion in EPA MRR, Table A-1. Solution for actual gas combustion in EPA MRR, Table A-1. Actual production is calendar year 2011 production rate. Actual production is calendar year 2020 production rate. Maximum production is permitted production rate be sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
C) Emission factors from AP-42 for Uncontrolled Utility/Large Industrial Natural Gas-fired Boilers - Table 1.4-3. D) Highest emission factors from NC-ASI Technical Bulletin No. 650 (Table 4c), Natural Gas-fired Utility Boilers. E) All particulte matter assumed to be less than 2.5, per AP-42. F) Primary VOC assumed to be formaldehyde. G) VOC emissions are sum of individual speciated VOC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. D) Emission factor for natural gas combustion in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. Seminary of the sem												
D) Highest emission factors from NCASI Technical Bulletin No. 650 (Table 4c), Natural Gas-fired Utility Boilers. E) All particulte matter assumed to be less than 2.5, per AP-42. F) Primary VOC assumed to be formaldehyde. G) VOC emissions are sum of individual speciated VOC. H) Emission factor for AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. Emission factor for natural gas combustion in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. 9. Emission factor based on GWP in EPA MRR, Table A-1. 9. NOTES: Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
E) All particulte matter assumed to be less than 2.5, per AP-42. F) Primary VCC assumed to be formaldehyde. G) VCC emissions are sum of individual speciated VCC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. I) Emission factor based on GWP in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. 9. NOTES: Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl sulfide.												
F) Primary VOC assumed to be formaldehyde. G) VOC emissions are sum of individual speciated VOC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. I) Emission factor for natural gas combustion in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. 9. NOTES: Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Actual production is calendar year 2005 production rate. Maximum production is calendar year sobs production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl sulfide, and dimethyl disulfide.			Table 4c), Natura	al Gas-fired Utility	Boilers.							
G) VOC emissions are sum of individual speciated VOC. H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. J) Emission factor for natural gas combustion in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. Seminary of the seminar		per AP-42.										
H) Emission factors from AP-42 for Uncontrolled Natural Gas-fired Boilers - Table 1.4-4. () Emission factor for natural gas combustion in EPA MRR, Table C-1 and C-2. J) Emission factor based on GWP in EPA MRR, Table A-1. Seminary of the seminary of th		l										
9. NOTES: Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl disulfide.												
J) Emission factor based on GWP in EPA MRR, Table A-1. Solution factor based on GWP				-4.								
9. NOTES: Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl disulfide.			and C-2.									
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.	J) Emission factor based on GWP in EPA MRR, Tat	ole A-1.										
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.		-										
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.		-										
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.				<u> </u>								
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.		-										
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.				ļ			ļ					
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.		ļ		ļ			ļ					
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
Actual production is calendar year 2011 production rate. Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.	9. NOTES:											
Actual production is calendar year 2005 production rate. Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
Maximum production is permitted production rate. Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.												
Total reduced sulfur emission are the sum of emissions of hydrogen sulfide, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide.	Actual production is calendar year 2005 production i	rate.										
	Maximum production is permitted production rate.											
Process variability factors for metal compounds assume conversion of elemental metal to lowest state metal oxide, except HF.	Total reduced sulfur emission are the sum of emission	ons of hydrogen s	ulfide, methyl me	rcaptan, dimethy	sulfide, and dime	ethyl disulfide.						
	Process variablity factors for metal compounds assu	me conversion of	elemental meta	to lowest state n	netal oxide, excep	ot HF.						

Table B-8 No. 1 Combination Boiler – No. 6 Fuel Oil Emission Calculations

	1	I	1	1	MAXIMUM	MAXIMUM	MAXIMUM	ACTUAL			
1. & 2. PROCESS EMISSION SOURCE	MAXIMUM	PRODUCTION	ACTUAL	PRODUCTION	HOURS	DAYS	DAYS	DAYS			
THE ET THOUSE STATE OF THE STAT	PRODUCTION	UNITS	PRODUCTION	UNITS	PER DAY	PER WEEK	PER YEAR	PER YEAR			
Combination Boiler 1 - No. 6 Fuel Oil	392	MM Btu/hr	6	MM Btu/hr	24	7	365	364			
AEI Group ID = 008, Process Unit ID = 3											
Title V Unit ID = 08. Equipment ID = 2605								6. MAX	<imum< td=""><td>7. MAX</td><td>IMUM</td></imum<>	7. MAX	IMUM
						PROCESS	CONTROL	UNCONT	ROLLED	CONTRO	OLLED
			8. EMISSIO	ON FACTOR INFO	DRMATION	VARIABILITY	EFFICIENCY	EMISSIONS		EMISS	IONS
3. POLLUTANT	4. CAS #	5. TYPE	VALUE	UNITS	BASIS	FACTOR		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Filterable particulate matter			1.51E-01	#/MM Btu	K	1		59.04	258.60	59.04	258.60
Filterable particulate matter < 10 microns		Criteria	1.07E-01	#/MM Btu	K	1		41.97	183.83	41.97	183.83
Filterable particulate matter < 2.5 microns		Criteria	7.80E-02	#/MM Btu	K	1		30.59	133.98	30.59	133.98
Condensible particulate matter < 2.5 microns		Criteria	1.00E-02	#/MM Btu	С	1		3.92	17.17	3.92	17.17
Total paticulate matter								62.96	275.77	62.96	275.77
Total particulate matter < 10 microns		Criteria						45.89	201.00	45.89	201.00
Total particulate matter < 2.5 microns		Criteria						34.51	151.15	34.51	151.15
Sulfur dioxide	7446095	Criteria	2.20E+00	#/MM Btu	Α	1		861.62	3,773.88	861.62	3,773.88
Volatile organic compounds (as carbon)		Criteria	5.07E-03	#/MM Btu	В	1		1.99	8.70	1.99	8.70
Volatile organic compounds (as VOC)		Criteria	5.07E-03	#/MM Btu	М	2.5		4.97	21.75	4.97	21.75
Volatile organic compounds (sum of VOC)		Criteria			N	1		0.23	1.02	0.23	1.02
Carbon monoxide		Criteria	3.33E-02	#/MM Btu	Α	1		13.07	57.23	13.07	57.23
Lead		Criteria	2.80E-05	#/MM Btu	G	1		0.01	0.05	0.01	0.05
Nitrogen oxides		Criteria	3.13E-01	#/MM Btu	A	1		122.83	537.98	122.83	537.98
_											
Carbon dioxide	124389	GHG	7.51E+01	kg/MM Btu	I	1		64,901.23	284,267.41	64,901.23	284,267.41
Biogenic carbon dioxide	124389	GHG				1		0.00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Methane	74828	GHG, (112r)	3.00E-03	kg/MM Btu	1	1		2.59	11.36	2.59	11.36
Nitrous oxide	10024972	GHG	6.00E-04	kg/MM Btu	i	1		0.52	2.27	0.52	2.27
Carbon dioxide equivalent	10021012	GHG	0.002 01	ng////// Did		·		65,116.42	285,209.92	65,116.42	285,209.92
Chlorine dioxide	10049044	112r				1					
Sulfuric acid mist	7664939	TAP	7.98E-02	#/MM Btu	L	1.23		38.32	167.84	38.32	167.84
Hydrogen Sulfide	7783064	NSPS, TAP	7.002 02	m/mm Dia		1		30.32	107.04	30.02	107.04
Total Reduced Sulfur (as TRS)	7700004	NSPS				1					
Total Reduced Sulfur (as Sulfur)		NSPS				1					
Total Reduced Sulfur (as Hydrogen Sulfide)		NSPS				1					
Total Houses Caral (as Hydrogen Camas)		110.0				·					
Total 112(b) Hazardous Air Pollutants								1.87	8.20	1.87	8.20
(1)											
8. REFERENCES:											
A) Maximum emission factors from AP-42 for Uncor	ntrolled Residual (Oil-fired Utility Bo	pilers Table 1.3-1	: assumes 2.1% S	3.						
B) Maximum emission factors from AP-42 for Uncor											
C) Maximum emission factors from AP-42 for Resid					ılfur.						
Maximum emission factors from AP-42 for Uncor											
E) Maximum emission factors from AP-42 for Uncor					D).						
F) Maximum emission factors from AP-42 for Uncor											
G) Emission factor from U.S. EPA document "Estim					EPA-450/2-89-	0011 for Uncontro	lled Residual Oil-	fired Utility Boiler	s (Table 4-1).		
H) Highest emission factors from NCASI Technical I											
Emission factor for kerosene combustion in EPA N											
J) Emission factor based on GWP in EPA MRR, Tab		[
K) PM-10 and PM-2.5 ratio based on AP-42, Table											
L) Maximum SO3 emission factor from AP-42 for Ur		ual Oil-fired Utilit	v Boilers Table 1	.3-1: assumes 2.1	% S. Process v	ariablilty factor a	diusts SO3 to H2	SO4.			
M) Primary VOC assumed to be formaldehyde.	I		1			1	1				
N) VOC emissions are sum of individual speciated \	/OC.										
	1										
	1										
9. NOTES:											
Actual production is calendar year 2011 production r	ate.										
Actual production is calendar year 2005 production in											
Maximum production is permitted production rate.											
Total reduced sulfur emission are the sum of emission	ons of hydrogen s	ulfide, methyl me	rcaptan, dimethy	sulfide, and dime	ethyl disulfide						
Process variablity factors for metal compounds assu											
				0,1130, 0,000							
	1										
L											

Table B-9 No. 1 Combination Boiler – Tire Derived Fuel (TDF) Emission Calculations

						1					
4 4 4 PRO0E00 EMIONION COURSE	NAA VINALINA	DDODLIGHOU	AOTUAL	DDODLIGHOU	MAXIMUM	MAXIMUM	MAXIMUM	ACTUAL			
1. & 2. PROCESS EMISSION SOURCE	MAXIMUM PRODUCTION	PRODUCTION UNITS	ACTUAL PRODUCTION	PRODUCTION UNITS	HOURS PER DAY	DAYS PER WEEK	DAYS PER YEAR	DAYS PER YEAR			
Combination Boiler 1 - Tire Derived Fuel (TDF)	1.50	Ton TDF/hr	0.45	Ton TDF/hr	24	7	365	362			
AEI Group ID = 008, Process Unit ID = 6	1.50	TOTT TOT /TIL	0.40	TOTT TOT //II	24	-	303	302			
Title V Unit ID = 08. Equipment ID = 2605								6. MAX	KIMUM	7. MAXI	MUM
THE VOICE = 00. Equipment B = 2000						PROCESS	CONTROL	UNCONTROLLED		CONTROLLED	
<u> </u>				ON FACTOR INFO		VARIABILITY	EFFICIENCY		SIONS	EMISSI	
3. POLLUTANT	4. CAS #	5. TYPE	VALUE	UNITS	BASIS	FACTOR		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Filterable particulate matter			2.20E-06	#/MM Btu	D	1	99%	0.01	0.04	0.00	0.00
Filterable particulate matter < 10 microns		Criteria	2.20E-06	#/MM Btu	G	1	99%	0.01	0.04	0.00	0.00
Filterable particulate matter < 2.5 microns		Criteria	2.20E-06	#/MM Btu	G	1	99%	0.01	0.04	0.00	0.00
Condensible particulate matter < 2.5 microns Total paticulate matter	+	Criteria				'		0.01	0.04	0.00	0.00
Total particulate matter < 10 microns		Criteria						0.01	0.04	0.00	0.00
Total particulate matter < 2.5 microns		Criteria						0.01	0.04	0.00	0.00
Sulfur dioxide	7446095	Criteria	1.40E-05	#/MM Btu	D	1		0.00	0.04	0.00	0.00
Volatile organic compounds (as carbon)	7440033	Criteria	1.402-03	#/IVIIVI DIG	ь	1		0.00	0.00	0.00	0.00
Volatile organic compounds (as VOC)		Criteria				1					
Volatile organic compounds (sum of VOC)		Criteria				1		0.01	0.04	0.01	0.04
Carbon monoxide		Criteria	7.20E-05	#/MM Btu	D	1		0.00	0.04	0.00	0.04
Lead	1	Criteria	3.44E-02	#/Ton TDF	A	1		0.05	0.23	0.05	0.01
Nitrogen oxides		Criteria	9.80E-05	#/MM Btu	D	1		0.00	0.02	0.00	0.23
	+	- Ctona	0.002 00			 	<u> </u>	0.00	0.02	0.00	0.02
Carbon dioxide	124389	GHG	8.60E+01	kg/MM Btu	Е	1		284.29	1,245.20	284.29	1,245.20
Biogenic carbon dioxide	124389	GHG			_	1		0.00	.,2-70.20	_04.23	.,270.20
Methane	74828	GHG, (112r)	3.20E-02	kg/MM Btu	E	1		0.11	0.46	0.11	0.46
Nitrous oxide	10024972	GHG	4.20E-03	kg/MM Btu	Е	1		0.01	0.06	0.01	0.06
Carbon dioxide equivalent		GHG		,	F			290.82	1,273.79	290.82	1,273.79
·											
Chlorine dioxide	10049044	112r				1					
Sulfuric acid mist	7664939	TAP				1					
Hydrogen Sulfide	7783064	NSPS, TAP				1					
Total Reduced Sulfur (as TRS)		NSPS				1					
Total Reduced Sulfur (as Sulfur)		NSPS				1					
Total Reduced Sulfur (as Hydrogen Sulfide)		NSPS				1					
Total 112(b) Hazardous Air Pollutants								7.62	33.39	7.62	33.39
8. REFERENCES:											
A) Emission factor developed from Bowater stack t	test (3/1/2001)					-					
B) Emission factor from "Air Emissions from Scrap		(EDA_600/P-07	115) Table 18 -	Greater of 7% 1	5% 17% or 100	% TDE					
C) Emission factor from "Air Emissions from Scrap					376, 1776, 01 197	76 TDT .	-				
D) Emission factor from "Air Emissions from Scrap											
E) Emission factor for tires combustion in EPA MRF			110), 145.5 21	100701211							
F) Emission factor based on GWP in EPA MRR, Ta											
G) PM-10 and PM-2.5 emissions assumed equivale											
							1				
İ											
9. NOTES:											
Actual production is calendar year 2011 production											
Actual production is calendar year 2011 production Maximum production is maximum expected product	ion rate.	ME do se - M. J.		Indian dd	othyd dio 46 d-						
Actual production is calendar year 2011 production Maximum production is maximum expected product Total reduced sulfur emission are the sum of emissi	ion rate. ons of hydrogen s										
Actual production is calendar year 2011 production Maximum production is maximum expected product	ion rate. ons of hydrogen s										
Actual production is calendar year 2011 production Maximum production is maximum expected product Total reduced sulfur emission are the sum of emissi	ion rate. ons of hydrogen s										
Actual production is calendar year 2011 production Maximum production is maximum expected product Total reduced sulfur emission are the sum of emissi	ion rate. ons of hydrogen s										

Table B-10 No. 2 Combination Boiler – Biomass Emission Calculations

					MAXIMUM	L BAR VIBALIBA	MAXIMUM	AOTUAL			
1. & 2. PROCESS EMISSION SOURCE	MAXIMUM	PRODUCTION	ACTUAL	PRODUCTION	HOURS	MAXIMUM DAYS	DAYS	ACTUAL DAYS			
1. & Z.1 NOCESS EMISSION SOURCE	PRODUCTION	UNITS	PRODUCTION	UNITS	PER DAY	PER WEEK	PER YEAR	PER YEAR			
Combination Boiler 2 - Wood Waste	498	MM Btu/hr	359	MM Btu/hr	24	7	365	356			
AEI Group ID = 008, Process Unit ID = 10	100							777			
Title V Unit ID = 08. Equipment ID = 3705								6. MAX	IMUM	7. MAX	MUM
						PROCESS	CONTROL	UNCONT		CONTRO	
			8. EMISSIO	ON FACTOR INFO	ORMATION	VARIABILITY	EFFICIENCY	EMISS		EMISS	
3. POLLUTANT	4. CAS#	5. TYPE	VALUE	UNITS	BASIS	FACTOR	ETTIOLETTO :	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Filterable particulate matter			2.30E-01	#/MM Btu	0	1	99%	11,454.00	50,168.52	114.54	501.69
Filterable particulate matter < 10 microns		Criteria	1.70E-01	#/MM Btu	P	1	99%	8,466.00	37,081.08	84.66	370.81
Filterable particulate matter < 2.5 microns		Criteria	1.50E-01	#/MM Btu	P	1	99%	7,470.00	32,718.60	74.70	327.19
Condensible particulate matter < 2.5 microns		Criteria	1.70E-02	#/MM Btu	A	1	0070	8.47	37.08	8.47	37.08
Total paticulate matter		Ontona	1 02 02	######################################	,,	1		11,462.47	50,205.60	123.01	538.77
Total particulate matter < 10 microns		Criteria				1		8,474.47	37,118.16	93.13	407.89
Total particulate matter < 2.5 microns		Criteria				1		7,478.47	32,755.68	83.17	364.27
Sulfur dioxide	7446095	Criteria	2.50E-02	#/MM Btu	В	1		12.45	54.53	12.45	54.53
Volatile organic compounds (as carbon)	7440000	Criteria	1.30E-02	#/MM Btu	F	1		6.47	28.36	6.47	28.36
Volatile organic compounds (as VOC)		Criteria	1.30E-02	#/MM Btu	K	2.5		16.19	70.89	16.19	70.89
Volatile organic compounds (sum of VOC)		Criteria	1.50L-02	#/IVIIVI Dia	N	1		5.57	24.39	5.57	24.39
Carbon monoxide		Criteria	9.10E-01	#/MM Btu	0	1		453.18	1,984.93	453.18	1,984.93
Lead	+		7.40E-06	#/MM Btu	G	1		453.18	1,984.93	453.18 0.00	1,984.93
Nitrogen oxides	+	Criteria	7.40E-06 2.90E-01	#/MM Btu #/MM Btu	<u>G</u>	1		144.42	632.56	144.42	632.56
INITIOGETIONIDES	+	Criteria	2.90E-01	#/IVIIVI DIU	U	-		144.42	032.36	144.42	032.56
Corbon disvide	101000	CUC						0.00			
Carbon dioxide	124389	GHG	0.005 - 04	Is on / MAR A Date:	L	1		0.00	454 050 0-	400.001.1-	454 050 55
Biogenic carbon dioxide	124389	GHG	9.38E+01	kg/MM Btu		· ·		102,981.48	451,058.89	102,981.48	451,058.89
Methane	74828	GHG, (112r)	3.20E-02	kg/MM Btu	<u> </u>	1		35.13	153.88	35.13	153.88
Nitrous oxide	10024972	GHG	4.20E-03	kg/MM Btu	L	1		4.61	20.20	4.61	20.20
Carbon dioxide equivalent		GHG			М	1		105,148.70	460,551.32	105,148.70	460,551.32
Chlorine dioxide	10049044	112r				1					
Sulfuric acid mist	7664939	TAP				1					
Hydrogen Sulfide	7783064	NSPS, TAP	0.0E+00			1					
Total Reduced Sulfur (as TRS)		NSPS	0.0E+00	#/MM Btu	E	1		0.00	0.00	0.00	0.00
Total Reduced Sulfur (as Sulfur)		NSPS	0.0E+00	#/MM Btu	E	1		0.00	0.00	0.00	0.00
Total Reduced Sulfur (as Hydrogen Sulfide)		NSPS	0.0E+00	#/MM Btu	E	1		0.00	0.00	0.00	0.00
T. 1440(1)11	1									2.04	
Total 112(b) Hazardous Air Pollutants								2.04	8.95	2.04	8.95
8. REFERENCES:											
	LAM d C d D - ll-										
A) Emission factors from AP-42 - Table 1.6-1, Barl	k/vvood-tired Boile	r with ESP.									
B) Emission factors from AP-42 Table 1.6-2.											
C) Emission factors from AP-42 Table 1.6-3.											
D) Emission factors from AP-42 Table 1.6-4.											
E) Median emission factors from NCASI Technical		Table 19A, Woo	d-fired Boilers.								
F) Emission factors from NCASI Technical Bulletin											
G) Emission factors from NCASI Technical Bulletin											
H) Average emission factors from NCASITechnica									WF.		
Average emission factors from NCASI Technical					ctor converted fr	om #/IDF to #/M	M Btu assuming	18 MM Btu/TDF.			
Average emission factors from NCASI Technica	I Bulletin No. 646 -	Table 3, Bark/W	ood Residue Bo	ilers.							
K) Primary VOC assumed to be formaldehyde.			L								
L) Emission factor for wood and wood residuals co		MRR, Table C-1 a	and C-2.								
M) Emission factor based on GWP in EPA MRR, To											
N) VOC emissions are sum of individual speciated											
O) Average emission factor from October 2013 Boi											
P) PM emission factor multiplied by AP-42 ratio of	PM/PM10 and PM	/PM2.5.									
						ļ					
9. NOTES:											
Actual production is calendar year 2011 production	rate.										
Actual production is calendar year 2005 production	rate.										
Maximum production is permitted production rate.											
Total reduced sulfur emission are the sum of emiss	ions of hydrogen s	ulfide, methyl me	rcaptan, dimethy	sulfide, and dime	ethyl disulfide.						
Process variablity factors for metal compounds ass	ume conversion of	elemental metal	to lowest state n	netal oxide, excep	t HF.						

Table B-11 No. 2 Combination Boiler – Natural Gas Emission Calculations

				1	NAA VINALINA	NAA VINALINA	NAA VINALINA	ACTUAL				
1. & 2. PROCESS EMISSION SOURCE	MAXIMUM	PRODUCTION	ACTUAL	PRODUCTION	MAXIMUM HOURS	MAXIMUM DAYS	MAXIMUM DAYS	ACTUAL DAYS				
1. & 2. PROCESS EMISSION SOURCE	PRODUCTION	UNITS	PRODUCTION	UNITS	PER DAY	PER WEEK	PER YEAR	PER YEAR				
Combination Boiler 2 - Natural Gas	720	MM Btu/hr	7	MM Btu/hr	24	7	365	358				
AEI Group ID = 008, Process Unit ID = 9		William Diagram	·	Will Diam			000	000				
Title V Unit ID = 08. Equipment ID = 3705								6. MAX	KIMUM	7. MAX	IMUM	
						PROCESS	CONTROL		ROLLED	CONTRO		
			8. EMISSIO	ON FACTOR INFO	ORMATION	VARIABILITY	EFFICIENCY		SIONS	EMISS		
3. POLLUTANT	4. CAS#	5. TYPE	VALUE	UNITS	BASIS	FACTOR		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)	
Filterable particulate matter			1.90E-03	#/MM Btu	В	1		1.37	5.99	1.37	5.99	
Filterable particulate matter < 10 microns		Criteria	1.90E-03	#/MM Btu	Е	1		1.37	5.99	1.37	5.99	
Filterable particulate matter < 2.5 microns		Criteria	1.90E-03	#/MM Btu	E	1		1.37	5.99	1.37	5.99	
Condensible particulate matter < 2.5 microns		Criteria	5.70E-03	#/MM Btu	В	1		4.10	17.98	4.10	17.98	
Total paticulate matter						1		5.47	23.97	5.47	23.97	
Total particulate matter < 10 microns		Criteria				1		5.47	23.97	5.47	23.97	
Total particulate matter < 2.5 microns		Criteria				1		5.47	23.97	5.47	23.97	
Sulfur dioxide	7446095	Criteria	6.00E-04	#/MM Btu	В	1		0.43	1.89	0.43	1.89	
Volatile organic compounds (as carbon)		Criteria	5.50E-03	#/MM Btu	В	1		3.96	17.34	3.96	17.34	
Volatile organic compounds (as VOC)		Criteria	5.50E-03	#/MM Btu	F	2.5		9.90	43.36	9.90	43.36	
Volatile organic compounds (sum of VOC)		Criteria	0.002 00	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	G	1		8.31	36.40	8.31	36.40	
Carbon monoxide		Criteria	8.40E-02	#/MM Btu	A	1	1	60.48	264.90	60.48	264.90	
Lead	1	Criteria	5.00E-07	#/MM Btu	В	1		0.00	0.00	0.00	0.00	
Nitrogen oxides	1	Criteria	2.80E-01	#/MM Btu	A	1		201.60	883.01	201.60	883.01	
	l .	5ona	2.002 01	.,		- 		201.00	300.01	_01.00	300.01	
Carbon dioxide	124389	GHG	5.30E+01	kg/MM Btu		1		84,158.73	368,615.24	84,158.73	368,615.24	
Biogenic carbon dioxide	124389	GHG	0.002101	rig/min Dia		1		0.00	300,013.24	04,100.10	000,010.24	
Methane	74828	GHG, (112r)	1.00E-03	kg/MM Btu		1		1.59	6.95	1.59	6.95	
Nitrous oxide	10024972	GHG	1.00E-04	kg/MM Btu	i	1		0.16	0.70	0.16	0.70	
Carbon dioxide equivalent	10024372	GHG	1.002 04	Rg/WIW Dia	.	1		84,241.27	368,976.76	84,241.27	368,976.76	
Carbon dioxide equivalent		One				· ·		04,241.21	300,51 0.1 0	04,241.27	000,510.10	
Chlorine dioxide	10049044	112r				1						
Sulfuric acid mist	7664939	TAP				1						
Hydrogen Sulfide	7783064	NSPS, TAP				1						
Total Reduced Sulfur (as TRS)	1100001	NSPS				1						
Total Reduced Sulfur (as Sulfur)		NSPS				1						
Total Reduced Sulfur (as Hydrogen Sulfide)		NSPS				1						
Total Reduced Gallar (as Flydrogen Gallac)		1401 0				· ·						
Total 112(b) Hazardous Air Pollutants								1.55	6.78	1.55	6.78	
8. REFERENCES:												
A) Emission factors from AP-42 for Uncontrolled Uti	lity/Large Industria	al Natural Gas-fir	ed Boilers - Tabl	e 1.4-1.								
B) Emission factors from AP-42 for Uncontrolled Uti												
C) Emission factors from AP-42 for Uncontrolled Uti	ility/Large Industri	al Natural Gas-fir	ed Boilers - Tabl	e 1.4-3.								
D) Highest emission factors from NCASI Technical	Bulletin No. 650 (Table 4c), Natura	al Gas-fired Utility	Boilers.								
E) All particulte matter assumed to be less than 2.5,	per AP-42.											
F) Primary VOC assumed to be formaldehyde.												
G) VOC emissions are sum of individual speciated \	VOC.											
H) Emission factors from AP-42 for Uncontrolled Na	itural Gas-fired Bo	oilers - Table 1.4	-4.									
I) Emission factor for natural gas combustion in EPA	MRR, Table C-1	and C-2.										
 J) Emission factor based on GWP in EPA MRR, Tat 	ole A-1.											
9. NOTES:												
Actual production is calendar year 2011 production i	rate.											
Actual production is calendar year 2005 production i	rate.											
Maximum production is permitted production rate.												
Total reduced sulfur emission are the sum of emission	ons of hydrogen s	ulfide, methyl me	rcaptan, dimethy	sulfide, and dime	ethyl disulfide.							
Process variablity factors for metal compounds assu	ime conversion of	elementai metai	to lowest state it	ietai uxide, excep	L FIF.							
Process variablity factors for metal compounds assu	ime conversion of	elementai metai	to lowest state in	netai Oxide, excep	ипг.							

Table B-12 No. 2 Combination Boiler – No. 6 Fuel Oil Emission Calculations

i de la companya de	I				MAXIMUM	MAXIMUM	MAXIMUM	ACTUAL			
1. & 2. PROCESS EMISSION SOURCE	MAXIMUM	PRODUCTION	ACTUAL	PRODUCTION	HOURS	DAYS	DAYS	DAYS			
1. & 2.1 NOCESS EMISSION SOUNCE	PRODUCTION	UNITS	PRODUCTION	UNITS	PER DAY	PER WEEK	PER YEAR	PER YEAR			
Combination Boiler 2 - No. 6 Fuel Oil	700	MM Btu/hr	10	MM Btu/hr	24	7	365	358			
AEI Group ID = 008, Process Unit ID = 8											
Title V Unit ID = 08. Equipment ID = 3705								6. MA	(IMUM	7. MAX	IMUM
						PROCESS	CONTROL	UNCONT	ROLLED	CONTRO	OLLED
			8. EMISSIO	ON FACTOR INFO	DRMATION	VARIABILITY	EFFICIENCY	EMISS		EMISS	
3. POLLUTANT	4. CAS #	5. TYPE	VALUE	UNITS	BASIS	FACTOR		(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
Filterable particulate matter			1.51E-01	#/MM Btu	K	1		105.43	461.79	105.43	461.79
Filterable particulate matter < 10 microns		Criteria	1.07E-01	#/MM Btu	K	1		74.95	328.26	74.95	328.26
Filterable particulate matter < 2.5 microns		Criteria	7.80E-02	#/MM Btu	K	1		54.62	239.24	54.62	239.24
Condensible particulate matter < 2.5 microns		Criteria	1.00E-02	#/MM Btu	С	1		7.00	30.66	7.00	30.66
Total paticulate matter					-			112.43	492.45	112.43	492.45
Total particulate matter < 10 microns		Criteria						81.95	358.92	81.95	358.92
Total particulate matter < 2.5 microns		Criteria						61.62	269.90	61.62	269.90
Sulfur dioxide	7446095	Criteria	2.20E+00	#/MM Btu	Α	1		1,538.60	6,739.07	1,538.60	6,739.07
Volatile organic compounds (as carbon)	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Criteria	5.07E-03	#/MM Btu	В	1		3.55	15.53	3.55	15.53
Volatile organic compounds (as VOC)		Criteria	5.07E-03	#/MM Btu	M	2.5		8.87	38.84	8.87	38.84
Volatile organic compounds (sum of VOC)		Criteria	0.07 E 00	#/IVIIVI Dia	N	1		0.41	1.81	0.41	1.81
Carbon monoxide		Criteria	3.33E-02	#/MM Btu	A	1		23.33	102.20	23.33	102.20
Lead	1	Criteria	2.80E-05	#/MM Btu	G	1		0.02	0.09	0.02	0.09
Nitrogen oxides	1	Criteria	3.13E-01	#/MM Btu	A	1					
INITOGETTONICES	1	Cillella	3.13E=U1	#/IVIIVI DLU	А	 		219.33	960.68	219.33	960.68
Carbon dioxide	124389	GHG	7.51E+01	ka/MM Dt.	ı	-		115,895.06	507,620.37	115,895.06	507,620.37
		GHG	7.51E+01	kg/MM Btu	ı	1			507,620.37	115,895.06	507,620.37
Biogenic carbon dioxide	124389		0.005.00					0.00			
Methane	74828	GHG, (112r)	3.00E-03	kg/MM Btu	<u> </u>	1		4.63	20.28	4.63	20.28
Nitrous oxide	10024972	GHG	6.00E-04	kg/MM Btu	<u> </u>	1		0.93	4.06	0.93	4.06
Carbon dioxide equivalent		GHG			J			116,279.32	509,303.43	116,279.32	509,303.43
<u> </u>											
Chlorine dioxide	10049044	112r				1					
Sulfuric acid mist	7664939	TAP	7.98E-02	#/MM Btu	L	1.23		68.43	299.72	68.43	299.72
Hydrogen Sulfide	7783064	NSPS, TAP				1					
Total Reduced Sulfur (as TRS)		NSPS				1					
Total Reduced Sulfur (as Sulfur)		NSPS				1					
Total Reduced Sulfur (as Hydrogen Sulfide)		NSPS				1					
Total 112(b) Hazardous Air Pollutants								3.34	14.64	3.34	14.64
8. REFERENCES:											
 A) Maximum emission factors from AP-42 for Unco 	ntrolled Residual	Oil-fired Utility Bo	ilers Table 1.3-1	: assumes 2.1% S	3.						
B) Maximum emission factors from AP-42 for Unco	ntrolled Residual	Oil-fired Utility Bo	ilers - Table 1.3-	3.							
 C) Maximum emission factors from AP-42 for Resident 	dual Oil-fired Utility	y Boilers with ES	Ps Table 1.3-4: a	assumes 2.1% Su	lfur.						
D) Maximum emission factors from AP-42 for Unco	ontrolled Residual	Oil-fired Utility Bo	oilers - Table 1.3-	-8.							
E) Maximum emission factors from AP-42 for Unco	ntrolled Residual	Oil-fired Utility Bo	ilers - Table 1.3-	9 (PCDD is OCD	D).						
F) Maximum emission factors from AP-42 for Unco	ntrolled Residual	Oil-fired Utility Bo	ilers - Table 1.3-	11.							
G) Emission factor from U.S. EPA document "Estir	mating Air Toxic E	missions from Co	oal and Oil Comb	ustion Sources" [EPA-450/2-89-	001] for Uncontro	lled Residual Oil-	fired Utility Boiler	s (Table 4-1).		
H) Highest emission factors from NCASI Technical	Bulletin No. 650 (Table 4b), Resid	ual Oil-fired Utility	Boilers.							
I) Emission factor for kerosene combustion in EPA	MRR, Table C-1 a	nd C-2.	· · · · · · · · · · · · · · · · · · ·								
J) Emission factor based on GWP in EPA MRR, Ta											
K) PM-10 and PM-2.5 ratio based on AP-42, Table	1.3-4.										
L) Maximum SO3 emission factor from AP-42 for U		ual Oil-fired Utilit	v Boilers Table 1	.3-1: assumes 2.1	% S. Process v	ariablilty factor a	diusts SO3 to H25	SO4.			
M) Primary VOC assumed to be formaldehyde.											
N) VOC emissions are sum of individual speciated	VOC.					1					
9. NOTES:											
5. NOTES.											
Actual production is calendar year 2011 production	rate										
Actual production is calendar year 2005 production											
	rate.										
Maximum production is permitted production rate.	and of burder are	ulfida martii I	reenten dissert	lauffala	albud aliquate aliq						
Total reduced sulfur emission are the sum of emissi											
Process variablity factors for metal compounds ass	ume conversion of	r eiemental metal	to lowest state n	netal oxide, excep	it HF.						
	1										

Table B-13 No. 2 Combination Boiler – Tire Derived Fuel (TDF) Emission Calculations

	1				BAA VIBALIBA	NAA VBALBA	BAA VIBALIBA	AOTUAL			
1. & 2. PROCESS EMISSION SOURCE	MAXIMUM	PRODUCTION	ACTUAL	PRODUCTION	MAXIMUM HOURS	MAXIMUM DAYS	MAXIMUM DAYS	ACTUAL DAYS			
1. & 2. PROCESS EMISSION SOURCE	PRODUCTION	UNITS	PRODUCTION	UNITS	PER DAY	PER WEEK	PER YEAR	PER YEAR			
Combination Boiler 2 - Tire Derived Fuel (TDF)	1.50	Ton TDF/hr	0.63	Ton TDF/hr	24	7	365	356			
AEI Group ID = 008, Process Unit ID = 11	1.50	TOTT TOT /TIL	0.03	TOTT TOTT // III	24	,	303	330			
Title V Unit ID = 08. Equipment ID = 3705	-							6. MAX	ZINAL INA	7. MAX	INAL INA
Title V Official = 00. Equipment ib = 3703	_					PROCESS	CONTROL			CONTRO	
			0 EMICCK	ON FACTOR INFO	ODMATION	VARIABILITY	CONTROL	UNCONTROLLED EMISSIONS		EMISS	
3. POLLUTANT	4. CAS #	5. TYPE	VALUE	UNITS	BASIS	FACTOR	EFFICIENCY	(lb/hr)	(tons/yr)	(lb/hr)	(tons/yr)
	4. CAS#	3. I IFE	2.20E-06	#/MM Btu	D	1	000/				
Filterable particulate matter		Criteria	2.20E-06 2.20E-06	#/MM Btu	G	1	99% 99%	0.01	0.04	0.00	0.00
Filterable particulate matter < 10 microns Filterable particulate matter < 2.5 microns		Criteria	2.20E-06 2.20E-06	#/MM Btu	G	1	99%	0.01 0.01	0.04 0.04	0.00	0.00
		Criteria	2.202-00	#/IVIIVI DIU	G	1	9970	0.01	0.04	0.00	0.00
Condensible particulate matter < 2.5 microns		Criteria				1					
Total paticulate matter		Oritoria						0.01	0.04	0.00	0.00
Total particulate matter < 10 microns		Criteria						0.01	0.04	0.00	0.00
Total particulate matter < 2.5 microns	7446095	Criteria	4.405.05	"AMADE:	-			0.01	0.04	0.00	0.00
Sulfur dioxide	7446095	Criteria	1.40E-05	#/MM Btu	D	1		0.00	0.00	0.00	0.00
Volatile organic compounds (as carbon)		Criteria				1					
Volatile organic compounds (as VOC)		Criteria				1					
Volatile organic compounds (sum of VOC)		Criteria				1		0.01	0.04	0.01	0.04
Carbon monoxide		Criteria	7.20E-05	#/MM Btu	D	1		0.00	0.01	0.00	0.01
Lead	ļ	Criteria	3.44E-02	#/Ton TDF	Α	1		0.05	0.23	0.05	0.23
Nitrogen oxides	1	Criteria	9.80E-05	#/MM Btu	D	1		0.00	0.02	0.00	0.02
	1										
Carbon dioxide	124389	GHG	8.60E+01	kg/MM Btu	E	1		284.29	1,245.20	284.29	1,245.20
Biogenic carbon dioxide	124389	GHG				1		0.00			
Methane	74828	GHG, (112r)	3.20E-02	kg/MM Btu	Е	1		0.11	0.46	0.11	0.46
Nitrous oxide	10024972	GHG	4.20E-03	kg/MM Btu	E	1		0.01	0.06	0.01	0.06
Carbon dioxide equivalent		GHG			F			290.82	1,273.79	290.82	1,273.79
Chlorine dioxide	10049044	112r				1					
Sulfuric acid mist	7664939	TAP				1					
Hydrogen Sulfide	7783064	NSPS, TAP				1					
Total Reduced Sulfur (as TRS)		NSPS				1					
Total Reduced Sulfur (as Sulfur)		NSPS				1				-	-
Total Reduced Sulfur (as Hydrogen Sulfide)		NSPS				1					
· · · · · · · · · · · · · · · · · · ·						-					
Total 112(b) Hazardous Air Pollutants								7.62	33.39	7.62	33.39
(1)						1					
8. REFERENCES:											
A) Emission factor developed from Bowater stack to	est (3/1/2001).										
B) Emission factor from "Air Emissions from Scrap"		(FPA-600/R-97-	115) Table 18 -	Greater of 7% 1	5% 17% or 199	% TDF					
C) Emission factor from "Air Emissions from Scrap					570, 1770, 01 107						
D) Emission factor from "Air Emissions from Scrap"											
E) Emission factor for tires combustion in EPA MRR			110), 145.6 21	100701211		1					
F) Emission factor based on GWP in EPA MRR, Ta		J 2.									
G) PM-10 and PM-2.5 emissions assumed equivale						-					
o, i iii io ana i iii 2.5 omioono accamea equivale											
	1										
	-										
						-					
	-					<u> </u>					
	-					-					
	-					-					
	-										
	-										
9. NOTES:	-										
	l										
Actual production is calendar year 2011 production											
Maximum production is maximum expected producti											
Total reduced sulfur emission are the sum of emission											
Process variablity factors for metal compounds assu	me conversion of	f elemental metal	to lowest state n	netal oxide, excep	ot HF.						